$x = 1 + \sqrt{6}$、 $y = 1 - \sqrt{6}$ のとき、$xy^2 + x^2y$ の値を求めなさい。代数学式の計算因数分解平方根式の値2025/5/261. 問題の内容x=1+6x = 1 + \sqrt{6}x=1+6、 y=1−6y = 1 - \sqrt{6}y=1−6 のとき、xy2+x2yxy^2 + x^2yxy2+x2y の値を求めなさい。2. 解き方の手順まず、xy2+x2yxy^2 + x^2yxy2+x2y を因数分解します。xy2+x2y=xy(y+x)xy^2 + x^2y = xy(y + x)xy2+x2y=xy(y+x)次に、x+yx+yx+yとxyxyxyを計算します。x+y=(1+6)+(1−6)=1+6+1−6=2x + y = (1 + \sqrt{6}) + (1 - \sqrt{6}) = 1 + \sqrt{6} + 1 - \sqrt{6} = 2x+y=(1+6)+(1−6)=1+6+1−6=2xy=(1+6)(1−6)=12−(6)2=1−6=−5xy = (1 + \sqrt{6})(1 - \sqrt{6}) = 1^2 - (\sqrt{6})^2 = 1 - 6 = -5xy=(1+6)(1−6)=12−(6)2=1−6=−5xy2+x2y=xy(x+y)xy^2 + x^2y = xy(x+y)xy2+x2y=xy(x+y) にx+yx+yx+yとxyxyxyの値を代入します。xy(x+y)=(−5)(2)=−10xy(x+y) = (-5)(2) = -10xy(x+y)=(−5)(2)=−103. 最終的な答え-10