与えられた3つの式を展開する問題です。 (1) $(x-y-1)^2$ (2) $(2x+3y-5z)^2$ (3) $(x+y+6z)(x+y-6z)$代数学展開多項式式の計算2025/5/261. 問題の内容与えられた3つの式を展開する問題です。(1) (x−y−1)2(x-y-1)^2(x−y−1)2(2) (2x+3y−5z)2(2x+3y-5z)^2(2x+3y−5z)2(3) (x+y+6z)(x+y−6z)(x+y+6z)(x+y-6z)(x+y+6z)(x+y−6z)2. 解き方の手順(1) (x−y−1)2(x-y-1)^2(x−y−1)2 を展開します。(x−y−1)2=(x−y−1)(x−y−1)(x-y-1)^2 = (x-y-1)(x-y-1)(x−y−1)2=(x−y−1)(x−y−1)=x(x−y−1)−y(x−y−1)−1(x−y−1)= x(x-y-1) -y(x-y-1) -1(x-y-1)=x(x−y−1)−y(x−y−1)−1(x−y−1)=x2−xy−x−yx+y2+y−x+y+1= x^2 - xy - x - yx + y^2 + y - x + y + 1=x2−xy−x−yx+y2+y−x+y+1=x2+y2+1−2xy−2x+2y= x^2 + y^2 + 1 - 2xy - 2x + 2y=x2+y2+1−2xy−2x+2y(2) (2x+3y−5z)2(2x+3y-5z)^2(2x+3y−5z)2 を展開します。(2x+3y−5z)2=(2x+3y−5z)(2x+3y−5z)(2x+3y-5z)^2 = (2x+3y-5z)(2x+3y-5z)(2x+3y−5z)2=(2x+3y−5z)(2x+3y−5z)=2x(2x+3y−5z)+3y(2x+3y−5z)−5z(2x+3y−5z)= 2x(2x+3y-5z) + 3y(2x+3y-5z) - 5z(2x+3y-5z)=2x(2x+3y−5z)+3y(2x+3y−5z)−5z(2x+3y−5z)=4x2+6xy−10xz+6xy+9y2−15yz−10xz−15yz+25z2= 4x^2 + 6xy - 10xz + 6xy + 9y^2 - 15yz - 10xz - 15yz + 25z^2=4x2+6xy−10xz+6xy+9y2−15yz−10xz−15yz+25z2=4x2+9y2+25z2+12xy−20xz−30yz= 4x^2 + 9y^2 + 25z^2 + 12xy - 20xz - 30yz=4x2+9y2+25z2+12xy−20xz−30yz(3) (x+y+6z)(x+y−6z)(x+y+6z)(x+y-6z)(x+y+6z)(x+y−6z) を展開します。x+y=Ax+y = Ax+y=A と置換すると、 (A+6z)(A−6z)(A+6z)(A-6z)(A+6z)(A−6z) となります。これは (a+b)(a−b)=a2−b2(a+b)(a-b) = a^2 - b^2(a+b)(a−b)=a2−b2 の公式が使えるので、(A+6z)(A−6z)=A2−(6z)2=A2−36z2(A+6z)(A-6z) = A^2 - (6z)^2 = A^2 - 36z^2(A+6z)(A−6z)=A2−(6z)2=A2−36z2AAA を x+yx+yx+y に戻すと、(x+y)2−36z2=x2+2xy+y2−36z2(x+y)^2 - 36z^2 = x^2 + 2xy + y^2 - 36z^2(x+y)2−36z2=x2+2xy+y2−36z23. 最終的な答え(1) x2+y2+1−2xy−2x+2yx^2 + y^2 + 1 - 2xy - 2x + 2yx2+y2+1−2xy−2x+2y(2) 4x2+9y2+25z2+12xy−20xz−30yz4x^2 + 9y^2 + 25z^2 + 12xy - 20xz - 30yz4x2+9y2+25z2+12xy−20xz−30yz(3) x2+y2−36z2+2xyx^2 + y^2 - 36z^2 + 2xyx2+y2−36z2+2xy