##
1. 問題の内容
与えられた重積分の値を計算します。
(1) 領域 が , で定義されるとき、重積分 を計算します。
(2) 領域 が で定義されるとき、重積分 を計算します。
(3) 領域 が , で定義されるとき、重積分 を計算します。
##
2. 解き方の手順
**(1)**
積分領域 は長方形であるため、積分順序を自由に選択できます。 で先に積分し、 で後に積分します。
まず内側の積分を計算します。
次に外側の積分を計算します。
**(2)**
積分領域 は であり、これは正方形の領域です。
は と に関して奇関数なので、積分領域が原点に関して対称であれば、積分値は 0 になります。 は原点に関して対称であるため、
**(3)**
積分領域 は , です。積分範囲は、 について であり、 について です。
まず内側の積分を計算します。
次に外側の積分を計算します。
##
3. 最終的な答え
(1)
(2)
(3)