与えられた式 $(x-2)^2 + 6(x-2) + 9$ を因数分解してください。

代数学因数分解二次式代数
2025/5/27

1. 問題の内容

与えられた式 (x2)2+6(x2)+9(x-2)^2 + 6(x-2) + 9 を因数分解してください。

2. 解き方の手順

式を因数分解するために、まず A=x2A = x-2 と置きます。すると、与えられた式は A2+6A+9A^2 + 6A + 9 となります。
これは、AA に関する2次式であり、 (A+3)2(A+3)^2 と因数分解できます。
元の変数 xx に戻すと、A=x2A = x-2 なので、式は ((x2)+3)2((x-2)+3)^2 となります。
これを整理すると (x2+3)2=(x+1)2(x-2+3)^2 = (x+1)^2 となります。

3. 最終的な答え

(x+1)2(x+1)^2

「代数学」の関連問題

与えられた行列 $A$ の逆行列を、逆行列の公式を用いて求めよ。逆行列が存在しない場合は「なし」と答える。 $A = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 &...

行列逆行列行列式
2025/5/28

与えられた行列 $A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ を対角化する問題です。

線形代数行列対角化固有値固有ベクトル
2025/5/28

与えられた3x3行列 $A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ を対角化する。

線形代数行列対角化固有値固有ベクトル
2025/5/28

与えられた行列 $A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ の固有値と、それらに対応する固有ベク...

線形代数固有値固有ベクトル行列
2025/5/28

行列 $A = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix}$ の固有値と固有値に対応する固有ベクトルを求めよ。

線形代数固有値固有ベクトル行列
2025/5/28

与えられた式 $a(x+2)^2 + b(x+3)^2 + c(x+2)(x+3) = x^2$ を展開し、$x$ について整理することで、$x$ の恒等式として係数を比較して、$a, b, c$ の...

恒等式多項式連立方程式係数比較展開
2025/5/28

与えられた3元連立一次方程式をクラメルの公式を用いて解く問題です。連立一次方程式は以下です。 $\begin{cases} x + 2y + 4z = 5 \\ 3x + 7y + 9z = 9 \\...

連立一次方程式クラメルの公式行列式
2025/5/28

$(\sqrt{6} - 2)^2$ を計算してください。

展開平方根式の計算
2025/5/28

与えられた式 $(3 - \sqrt{5})(3 + \sqrt{5})$ を計算して、その結果を求める問題です。

式の計算因数分解平方根
2025/5/28

$(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})$を計算しなさい。

平方根式の計算展開有理化
2025/5/28