与えられたグラフは、2乗に比例する関数 $y = ax^2$ のグラフです。このグラフから、$a$ の値を求めます。

代数学二次関数グラフ比例
2025/5/27

1. 問題の内容

与えられたグラフは、2乗に比例する関数 y=ax2y = ax^2 のグラフです。このグラフから、aa の値を求めます。

2. 解き方の手順

グラフ上の点を読み取ります。グラフを見ると、例えば点 (2, -2) を通っていることがわかります。この点を y=ax2y = ax^2 に代入して、aa を求めます。
x=2x=2, y=2y=-2y=ax2y=ax^2 に代入すると、
2=a(2)2-2 = a(2)^2
2=4a-2 = 4a
a=24a = -\frac{2}{4}
a=12a = -\frac{1}{2}

3. 最終的な答え

a=12a = -\frac{1}{2}

「代数学」の関連問題

3点A(0, 5), B(-1, a+3), C(3, 1-a) が同じ直線上にあるとき、定数aの値を求める。

直線座標傾き一次方程式
2025/5/28

$2x^2 + 3y^2 = 1$ を満たす実数 $x, y$ が与えられたとき、$x^2 - y^2 + xy$ の最大値を求める。

楕円最大値三角関数媒介変数表示
2025/5/28

$x = 5, y = -3$ のとき、以下の各式について、式の値を求めよ。 (1) $2(7x + 4y) - 3(2x - y)$ (2) $\frac{1}{3}(3x - y) - \frac...

式の計算文字式の計算式の値代入
2025/5/28

$a = 4$, $b = -2$ のとき、以下の式の値をそれぞれ求めます。 (1) $2a - 3b$ (3) $-7a - (2a - 3b)$ (5) $a^2 \times 3ab$

式の計算代入文字式
2025/5/28

$a = 4$ , $b = -2$ のとき、次の式の値をそれぞれ求めます。 (1) $2a - 3b$ (3) $-7a - (2a - 3b)$ (5) $a^2 \times 3ab$

式の計算代入四則演算
2025/5/28

$x^2 - 2ax + 3a - 2 = 0$ という二次方程式 (*) について、以下の条件を満たす $a$ の値の範囲を求めます。 (ア) (*) が異なる2つの実数解をもつ (イ) (*) が...

二次方程式解の条件判別式解と係数の関係
2025/5/28

$(a - 2b + c)^5$ の展開式における $a^2bc^2$ の項の係数を求める問題です。

多項定理展開係数
2025/5/28

## 連立1次方程式を解く

連立一次方程式線形代数ベクトル
2025/5/28

与えられた3つの連立1次方程式を解き、解をベクトル形式で表現します。

連立一次方程式線形代数ベクトル解の存在性
2025/5/28

$a = 4$, $b = -2$のとき、次の2つの式の値を求めます。 (1) $2a - 3b$ (3) $-7a - (2a - 3b)$

式の計算代入一次式
2025/5/28