$\sum_{k=1}^{n} (4k - 5)$ を計算する問題です。

代数学数列総和シグマ等差数列
2025/5/27

1. 問題の内容

k=1n(4k5)\sum_{k=1}^{n} (4k - 5) を計算する問題です。

2. 解き方の手順

総和の性質を利用して、\sum記号を分解します。
k=1n(4k5)=k=1n4kk=1n5\sum_{k=1}^{n} (4k - 5) = \sum_{k=1}^{n} 4k - \sum_{k=1}^{n} 5
定数倍は\sumの外に出すことができます。
k=1n4k=4k=1nk\sum_{k=1}^{n} 4k = 4 \sum_{k=1}^{n} k
k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2} および k=1n5=5n\sum_{k=1}^{n} 5 = 5n を用いると、
k=1n(4k5)=4k=1nkk=1n5=4n(n+1)25n=2n(n+1)5n\sum_{k=1}^{n} (4k - 5) = 4 \sum_{k=1}^{n} k - \sum_{k=1}^{n} 5 = 4 \cdot \frac{n(n+1)}{2} - 5n = 2n(n+1) - 5n
整理すると
2n(n+1)5n=2n2+2n5n=2n23n=n(2n3)2n(n+1) - 5n = 2n^2 + 2n - 5n = 2n^2 - 3n = n(2n - 3)

3. 最終的な答え

n(2n3)n(2n-3)

「代数学」の関連問題

与えられた行列 $A$ の逆行列を、逆行列の公式を用いて求めよ。逆行列が存在しない場合は「なし」と答える。 $A = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 &...

行列逆行列行列式
2025/5/28

与えられた行列 $A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ を対角化する問題です。

線形代数行列対角化固有値固有ベクトル
2025/5/28

与えられた3x3行列 $A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ を対角化する。

線形代数行列対角化固有値固有ベクトル
2025/5/28

与えられた行列 $A = \begin{bmatrix} 2 & 1 & 3 \\ -1 & 1 & -1 \\ 2 & 1 & 1 \end{bmatrix}$ の固有値と、それらに対応する固有ベク...

線形代数固有値固有ベクトル行列
2025/5/28

行列 $A = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix}$ の固有値と固有値に対応する固有ベクトルを求めよ。

線形代数固有値固有ベクトル行列
2025/5/28

与えられた式 $a(x+2)^2 + b(x+3)^2 + c(x+2)(x+3) = x^2$ を展開し、$x$ について整理することで、$x$ の恒等式として係数を比較して、$a, b, c$ の...

恒等式多項式連立方程式係数比較展開
2025/5/28

与えられた3元連立一次方程式をクラメルの公式を用いて解く問題です。連立一次方程式は以下です。 $\begin{cases} x + 2y + 4z = 5 \\ 3x + 7y + 9z = 9 \\...

連立一次方程式クラメルの公式行列式
2025/5/28

$(\sqrt{6} - 2)^2$ を計算してください。

展開平方根式の計算
2025/5/28

与えられた式 $(3 - \sqrt{5})(3 + \sqrt{5})$ を計算して、その結果を求める問題です。

式の計算因数分解平方根
2025/5/28

$(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})$を計算しなさい。

平方根式の計算展開有理化
2025/5/28