与えられた式 $4x^2 + 13x - 35$ を因数分解してください。

代数学因数分解二次式多項式
2025/5/27

1. 問題の内容

与えられた式 4x2+13x354x^2 + 13x - 35 を因数分解してください。

2. 解き方の手順

与えられた式を 4x2+13x354x^2 + 13x - 35 とします。
因数分解をするために、まず、acac の値を計算します。
a=4a = 4 で、c=35c = -35 なので、ac=4(35)=140ac = 4 * (-35) = -140です。
次に、acac の値である140-140の約数で、足して1313になる組み合わせを探します。
20207-7がその組み合わせです。なぜなら、20(7)=14020 * (-7) = -140であり、20+(7)=1320 + (-7) = 13です。
次に、元の式の中央の項 (13x13x) を、見つけた2つの数 (20207-7) を使って分割します。
4x2+13x35=4x2+20x7x354x^2 + 13x - 35 = 4x^2 + 20x - 7x - 35
次に、最初の2つの項 (4x2+20x4x^2 + 20x) から共通因数をくくり出します。
4x2+20x=4x(x+5)4x^2 + 20x = 4x(x + 5)
次に、最後の2つの項 (7x35-7x - 35) から共通因数をくくり出します。
7x35=7(x+5)-7x - 35 = -7(x + 5)
これで式は次のようになります。
4x(x+5)7(x+5)4x(x + 5) - 7(x + 5)
(x+5)(x + 5) が共通因数なので、これをくくり出します。
(x+5)(4x7)(x + 5)(4x - 7)

3. 最終的な答え

(x+5)(4x7)(x+5)(4x-7)

「代数学」の関連問題

与えられた6つの式をそれぞれ簡単にせよという問題です。式は以下の通りです。 (1) $\sqrt[4]{27\sqrt[4]{3}}$ (2) $\frac{\sqrt[3]{24}}{\sqrt[3...

根号指数計算
2025/5/28

与えられた式 $\sqrt[4]{27\sqrt[4]{3}}$ を簡単にする。

指数根号累乗
2025/5/28

2次方程式 $x^2 + 5x + m = 0$ の2つの解が与えられた条件を満たすとき、定数 $m$ の値と2つの解を求める。 (1) 1つの解が他の解の4倍である。 (2) 2つの解の差が1である...

二次方程式解と係数の関係解の条件解の求め方
2025/5/27

二次関数 $y = (x-2)^2 + 1$ のグラフの頂点の座標を求め、与えられた3つのグラフから正しいものを選択する問題です。

二次関数グラフ頂点平方完成
2025/5/27

問題9では、$x$ についての不等式 $x + a \ge 4x + 9$ が与えられています。 (1) この不等式の解が $x \le 2$ となるように、定数 $a$ の値を求めます。 (2) こ...

不等式連立不等式一次不等式文章問題
2025/5/27

次の問題に答えます。 (1) $|x-1|=3$ を解け。 (3) $|x-2|<4$ を解け。 (6) $|x+5|\ge 8$ を解け。 (8)(2) $-\frac{1}{2} < \frac{...

絶対値不等式方程式整数
2025/5/27

3次方程式 $x^3 + 2x^2 - 3x - 1 = 0$ が、区間 $(1, 2)$ に実数解をただ一つ持つことを示す。

方程式3次方程式実数解中間値の定理微分単調増加解析
2025/5/27

与えられたベクトル $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ 2 \end{...

ベクトル線形結合ベクトルの内積ベクトルの大きさ
2025/5/27

2種類の問題があります。 * **1. 二次方程式を解く問題** $x$ に関する二次方程式を解きます。 例えば、 $x(x-1) = 0$ のような方程式です。 * **2. 二次関...

二次方程式二次関数解の公式関数の値
2025/5/27

与えられた式 $(x+y+z)(-x+y+z)(x-y+z)(x+y-z)$ を展開し、簡略化せよ。

多項式の展開因数分解式の簡略化
2025/5/27