与えられた式 $(x+y+z)(-x+y+z)(x-y+z)(x+y-z)$ を展開し、簡略化せよ。代数学多項式の展開因数分解式の簡略化2025/5/271. 問題の内容与えられた式 (x+y+z)(−x+y+z)(x−y+z)(x+y−z)(x+y+z)(-x+y+z)(x-y+z)(x+y-z)(x+y+z)(−x+y+z)(x−y+z)(x+y−z) を展開し、簡略化せよ。2. 解き方の手順まず、与えられた式を以下のようにペアにします。((x+y+z)(−x+y+z))((x−y+z)(x+y−z))((x+y+z)(-x+y+z))((x-y+z)(x+y-z))((x+y+z)(−x+y+z))((x−y+z)(x+y−z))次に、それぞれのペアを計算します。最初のペアは、(x+y+z)(−x+y+z)=(y+z+x)(y+z−x)=(y+z)2−x2=y2+2yz+z2−x2(x+y+z)(-x+y+z) = (y+z+x)(y+z-x) = (y+z)^2 - x^2 = y^2 + 2yz + z^2 - x^2(x+y+z)(−x+y+z)=(y+z+x)(y+z−x)=(y+z)2−x2=y2+2yz+z2−x22つ目のペアは、(x−y+z)(x+y−z)=(x−(y−z))(x+(y−z))=x2−(y−z)2=x2−(y2−2yz+z2)=x2−y2+2yz−z2(x-y+z)(x+y-z) = (x-(y-z))(x+(y-z)) = x^2 - (y-z)^2 = x^2 - (y^2 - 2yz + z^2) = x^2 - y^2 + 2yz - z^2(x−y+z)(x+y−z)=(x−(y−z))(x+(y−z))=x2−(y−z)2=x2−(y2−2yz+z2)=x2−y2+2yz−z2したがって、元の式は、(y2+2yz+z2−x2)(x2−y2+2yz−z2)(y^2 + 2yz + z^2 - x^2)(x^2 - y^2 + 2yz - z^2)(y2+2yz+z2−x2)(x2−y2+2yz−z2) となります。ここで、A=2yzA = 2yzA=2yz、B=y2+z2−x2B = y^2 + z^2 - x^2B=y2+z2−x2、C=x2−y2−z2C = x^2 - y^2 - z^2C=x2−y2−z2 とおくと、与えられた式は、(B+A)(A−C)=(y2+2yz+z2−x2)(x2−y2+2yz−z2)=(2yz+(y2+z2−x2))(2yz−(y2+z2−x2))=(2yz)2−(y2+z2−x2)2(B+A)(A-C) = (y^2 + 2yz + z^2 - x^2)(x^2 - y^2 + 2yz - z^2) = (2yz + (y^2 + z^2 - x^2))(2yz - (y^2 + z^2 - x^2)) = (2yz)^2 - (y^2 + z^2 - x^2)^2(B+A)(A−C)=(y2+2yz+z2−x2)(x2−y2+2yz−z2)=(2yz+(y2+z2−x2))(2yz−(y2+z2−x2))=(2yz)2−(y2+z2−x2)2=4y2z2−(y4+z4+x4+2y2z2−2x2y2−2x2z2)= 4y^2z^2 - (y^4 + z^4 + x^4 + 2y^2z^2 - 2x^2y^2 - 2x^2z^2)=4y2z2−(y4+z4+x4+2y2z2−2x2y2−2x2z2)=4y2z2−y4−z4−x4−2y2z2+2x2y2+2x2z2= 4y^2z^2 - y^4 - z^4 - x^4 - 2y^2z^2 + 2x^2y^2 + 2x^2z^2=4y2z2−y4−z4−x4−2y2z2+2x2y2+2x2z2=−x4−y4−z4+2x2y2+2x2z2+2y2z2= -x^4 - y^4 - z^4 + 2x^2y^2 + 2x^2z^2 + 2y^2z^2=−x4−y4−z4+2x2y2+2x2z2+2y2z2したがって、求める答えは、2x2y2+2x2z2+2y2z2−x4−y4−z42x^2y^2 + 2x^2z^2 + 2y^2z^2 - x^4 - y^4 - z^42x2y2+2x2z2+2y2z2−x4−y4−z43. 最終的な答え2x2y2+2x2z2+2y2z2−x4−y4−z42x^2y^2 + 2x^2z^2 + 2y^2z^2 - x^4 - y^4 - z^42x2y2+2x2z2+2y2z2−x4−y4−z4