与えられた式 $(a-b)^2 - c^2$ を因数分解する問題です。

代数学因数分解式の展開二次式
2025/5/27

1. 問題の内容

与えられた式 (ab)2c2(a-b)^2 - c^2 を因数分解する問題です。

2. 解き方の手順

この式は A2B2A^2 - B^2 の形をしているので、和と差の積の公式 A2B2=(A+B)(AB)A^2 - B^2 = (A+B)(A-B) を利用して因数分解します。
ここで、A=(ab)A = (a-b)B=cB = c と置くと、
(ab)2c2=((ab)+c)((ab)c)(a-b)^2 - c^2 = ((a-b) + c)((a-b) - c)
となります。これを整理すると、
(ab)2c2=(ab+c)(abc)(a-b)^2 - c^2 = (a - b + c)(a - b - c)

3. 最終的な答え

(ab+c)(abc)(a - b + c)(a - b - c)

「代数学」の関連問題

与えられた式 $(x-1)x(x+1)(x+2) - 24$ を解く。

因数分解多項式二次方程式方程式
2025/5/28

行列 $A = \begin{bmatrix} 2 & 2 & 1 \\ 3 & 2 & 3 \\ 2 & 1 & 2 \end{bmatrix}$ が与えられている。 (1) 基本変形を用いて $A...

線形代数行列逆行列基本変形
2025/5/28

与えられた数式 $(9x-3) \div (-\frac{3}{2})$ を簡略化する。

式の簡略化一次式分配法則計算
2025/5/28

与えられた等式 $(k+3)x + (2k-1)y + 7 = 0$ が、任意の実数 $k$ に対して成り立つような $x$ と $y$ の値を求める問題です。

連立方程式一次方程式定数代入法
2025/5/28

与えられた式 $\frac{5x-12}{(2x+3)(x-5)} = \frac{a}{2x+3} + \frac{b}{x-5}$ を満たす $a$ と $b$ の値を求める問題です。

部分分数分解連立方程式分数式
2025/5/28

与えられた数式 $(7x - 14) \div (-\frac{7}{2})$ を簡略化します。

一次式式の計算分配法則分数
2025/5/28

与えられた式 $4x^2 - y^2 + 6y - 9$ を因数分解してください。

因数分解多項式二乗の差
2025/5/28

与えられた2変数2次式 $x^2 + 2xy + y^2 + 3x + 3y + 2$ を因数分解する。

因数分解2次式多項式
2025/5/28

(1) $2ax^2 - 8a$ を因数分解する。 (4) $4x^2 - y^2 + 6y - 9$ を因数分解する。 (7) $x^3 + x^2y - x^2 - y$ を因数分解する。

因数分解多項式
2025/5/28

与えられた式 $4x^2 - 8ax - 5a^2$ を因数分解する問題です。

因数分解二次式多項式
2025/5/28