$\lim_{x \to 0} \frac{\sin(x+a) - \sin(a)}{x}$ を求めよ。解析学極限三角関数微分2025/5/281. 問題の内容limx→0sin(x+a)−sin(a)x\lim_{x \to 0} \frac{\sin(x+a) - \sin(a)}{x}limx→0xsin(x+a)−sin(a) を求めよ。2. 解き方の手順三角関数の加法定理を利用して、sin(x+a)\sin(x+a)sin(x+a) を展開します。sin(x+a)=sin(x)cos(a)+cos(x)sin(a)\sin(x+a) = \sin(x)\cos(a) + \cos(x)\sin(a)sin(x+a)=sin(x)cos(a)+cos(x)sin(a)したがって、limx→0sin(x+a)−sin(a)x=limx→0sin(x)cos(a)+cos(x)sin(a)−sin(a)x\lim_{x \to 0} \frac{\sin(x+a) - \sin(a)}{x} = \lim_{x \to 0} \frac{\sin(x)\cos(a) + \cos(x)\sin(a) - \sin(a)}{x}limx→0xsin(x+a)−sin(a)=limx→0xsin(x)cos(a)+cos(x)sin(a)−sin(a)=limx→0sin(x)cos(a)+(cos(x)−1)sin(a)x= \lim_{x \to 0} \frac{\sin(x)\cos(a) + (\cos(x)-1)\sin(a)}{x}=limx→0xsin(x)cos(a)+(cos(x)−1)sin(a)=limx→0sin(x)cos(a)x+limx→0(cos(x)−1)sin(a)x= \lim_{x \to 0} \frac{\sin(x)\cos(a)}{x} + \lim_{x \to 0} \frac{(\cos(x)-1)\sin(a)}{x}=limx→0xsin(x)cos(a)+limx→0x(cos(x)−1)sin(a)limx→0sin(x)x=1\lim_{x \to 0} \frac{\sin(x)}{x} = 1limx→0xsin(x)=1 であることと、limx→0cos(x)−1x=0\lim_{x \to 0} \frac{\cos(x)-1}{x} = 0limx→0xcos(x)−1=0 であることを用いると、=cos(a)limx→0sin(x)x+sin(a)limx→0cos(x)−1x= \cos(a) \lim_{x \to 0} \frac{\sin(x)}{x} + \sin(a) \lim_{x \to 0} \frac{\cos(x)-1}{x}=cos(a)limx→0xsin(x)+sin(a)limx→0xcos(x)−1=cos(a)⋅1+sin(a)⋅0= \cos(a) \cdot 1 + \sin(a) \cdot 0=cos(a)⋅1+sin(a)⋅0=cos(a)= \cos(a)=cos(a)3. 最終的な答えcos(a)\cos(a)cos(a)