与えられた積分の問題を解きます。 積分は次の通りです。 $\int \frac{1}{x^4 + 4} dx$解析学積分因数分解部分分数分解arctan対数関数2025/5/291. 問題の内容与えられた積分の問題を解きます。積分は次の通りです。∫1x4+4dx\int \frac{1}{x^4 + 4} dx∫x4+41dx2. 解き方の手順まず、分母を因数分解します。x4+4=x4+4x2+4−4x2=(x2+2)2−(2x)2=(x2+2x+2)(x2−2x+2)x^4 + 4 = x^4 + 4x^2 + 4 - 4x^2 = (x^2 + 2)^2 - (2x)^2 = (x^2 + 2x + 2)(x^2 - 2x + 2)x4+4=x4+4x2+4−4x2=(x2+2)2−(2x)2=(x2+2x+2)(x2−2x+2)したがって、1x4+4=Ax+Bx2+2x+2+Cx+Dx2−2x+2\frac{1}{x^4 + 4} = \frac{Ax + B}{x^2 + 2x + 2} + \frac{Cx + D}{x^2 - 2x + 2}x4+41=x2+2x+2Ax+B+x2−2x+2Cx+D1=(Ax+B)(x2−2x+2)+(Cx+D)(x2+2x+2)1 = (Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2)1=(Ax+B)(x2−2x+2)+(Cx+D)(x2+2x+2)1=Ax3−2Ax2+2Ax+Bx2−2Bx+2B+Cx3+2Cx2+2Cx+Dx2+2Dx+2D1 = Ax^3 - 2Ax^2 + 2Ax + Bx^2 - 2Bx + 2B + Cx^3 + 2Cx^2 + 2Cx + Dx^2 + 2Dx + 2D1=Ax3−2Ax2+2Ax+Bx2−2Bx+2B+Cx3+2Cx2+2Cx+Dx2+2Dx+2D1=(A+C)x3+(−2A+B+2C+D)x2+(2A−2B+2C+2D)x+(2B+2D)1 = (A + C)x^3 + (-2A + B + 2C + D)x^2 + (2A - 2B + 2C + 2D)x + (2B + 2D)1=(A+C)x3+(−2A+B+2C+D)x2+(2A−2B+2C+2D)x+(2B+2D)係数を比較すると、以下の連立方程式が得られます。A+C=0A + C = 0A+C=0−2A+B+2C+D=0-2A + B + 2C + D = 0−2A+B+2C+D=02A−2B+2C+2D=02A - 2B + 2C + 2D = 02A−2B+2C+2D=02B+2D=12B + 2D = 12B+2D=1これらの式を解くと、A=18,C=−18,B=14,D=14A = \frac{1}{8}, C = -\frac{1}{8}, B = \frac{1}{4}, D = \frac{1}{4}A=81,C=−81,B=41,D=41したがって、1x4+4=18x+14x2+2x+2+−18x+14x2−2x+2\frac{1}{x^4 + 4} = \frac{\frac{1}{8}x + \frac{1}{4}}{x^2 + 2x + 2} + \frac{-\frac{1}{8}x + \frac{1}{4}}{x^2 - 2x + 2}x4+41=x2+2x+281x+41+x2−2x+2−81x+41積分は次のようになります。∫1x4+4dx=18∫x+2x2+2x+2dx+18∫−x+2x2−2x+2dx\int \frac{1}{x^4 + 4} dx = \frac{1}{8} \int \frac{x + 2}{x^2 + 2x + 2} dx + \frac{1}{8} \int \frac{-x + 2}{x^2 - 2x + 2} dx∫x4+41dx=81∫x2+2x+2x+2dx+81∫x2−2x+2−x+2dx=18∫x+1+1(x+1)2+1dx+18∫−(x−1)+1(x−1)2+1dx= \frac{1}{8} \int \frac{x + 1 + 1}{(x+1)^2 + 1} dx + \frac{1}{8} \int \frac{-(x - 1) + 1}{(x-1)^2 + 1} dx=81∫(x+1)2+1x+1+1dx+81∫(x−1)2+1−(x−1)+1dx=18∫x+1(x+1)2+1dx+18∫1(x+1)2+1dx−18∫x−1(x−1)2+1dx+18∫1(x−1)2+1dx= \frac{1}{8} \int \frac{x+1}{(x+1)^2 + 1} dx + \frac{1}{8} \int \frac{1}{(x+1)^2 + 1} dx - \frac{1}{8} \int \frac{x-1}{(x-1)^2 + 1} dx + \frac{1}{8} \int \frac{1}{(x-1)^2 + 1} dx=81∫(x+1)2+1x+1dx+81∫(x+1)2+11dx−81∫(x−1)2+1x−1dx+81∫(x−1)2+11dx=116ln(x2+2x+2)+18arctan(x+1)−116ln(x2−2x+2)+18arctan(x−1)+C= \frac{1}{16} \ln(x^2 + 2x + 2) + \frac{1}{8} \arctan(x+1) - \frac{1}{16} \ln(x^2 - 2x + 2) + \frac{1}{8} \arctan(x-1) + C=161ln(x2+2x+2)+81arctan(x+1)−161ln(x2−2x+2)+81arctan(x−1)+C=116ln(x2+2x+2x2−2x+2)+18arctan(x+1)+18arctan(x−1)+C= \frac{1}{16} \ln\left(\frac{x^2 + 2x + 2}{x^2 - 2x + 2}\right) + \frac{1}{8} \arctan(x+1) + \frac{1}{8} \arctan(x-1) + C=161ln(x2−2x+2x2+2x+2)+81arctan(x+1)+81arctan(x−1)+C3. 最終的な答え116ln(x2+2x+2x2−2x+2)+18arctan(x+1)+18arctan(x−1)+C\frac{1}{16} \ln\left(\frac{x^2 + 2x + 2}{x^2 - 2x + 2}\right) + \frac{1}{8} \arctan(x+1) + \frac{1}{8} \arctan(x-1) + C161ln(x2−2x+2x2+2x+2)+81arctan(x+1)+81arctan(x−1)+C