次の定積分を計算します。 (1) $\int_{0}^{\sqrt{3}} \frac{dx}{x^2+1}$ (2) $\int_{-2}^{2} \frac{dx}{x^2+4}$解析学定積分積分arctan微積分2025/5/281. 問題の内容次の定積分を計算します。(1) ∫03dxx2+1\int_{0}^{\sqrt{3}} \frac{dx}{x^2+1}∫03x2+1dx(2) ∫−22dxx2+4\int_{-2}^{2} \frac{dx}{x^2+4}∫−22x2+4dx2. 解き方の手順(1) ∫03dxx2+1\int_{0}^{\sqrt{3}} \frac{dx}{x^2+1}∫03x2+1dx1x2+1\frac{1}{x^2+1}x2+11 の原始関数は arctan(x)\arctan(x)arctan(x) です。したがって、∫03dxx2+1=arctan(x)∣03\int_{0}^{\sqrt{3}} \frac{dx}{x^2+1} = \arctan(x) \Big|_0^{\sqrt{3}}∫03x2+1dx=arctan(x)03=arctan(3)−arctan(0)=π3−0=π3= \arctan(\sqrt{3}) - \arctan(0) = \frac{\pi}{3} - 0 = \frac{\pi}{3}=arctan(3)−arctan(0)=3π−0=3π(2) ∫−22dxx2+4\int_{-2}^{2} \frac{dx}{x^2+4}∫−22x2+4dx1x2+4=14⋅1(x2)2+1\frac{1}{x^2+4} = \frac{1}{4} \cdot \frac{1}{(\frac{x}{2})^2+1}x2+41=41⋅(2x)2+11 であることに注意すると、∫dxx2+4=12arctan(x2)\int \frac{dx}{x^2+4} = \frac{1}{2} \arctan(\frac{x}{2})∫x2+4dx=21arctan(2x)∫−22dxx2+4=12arctan(x2)∣−22\int_{-2}^{2} \frac{dx}{x^2+4} = \frac{1}{2} \arctan(\frac{x}{2}) \Big|_{-2}^{2}∫−22x2+4dx=21arctan(2x)−22=12(arctan(1)−arctan(−1))=12(π4−(−π4))=12⋅π2=π4= \frac{1}{2} \left(\arctan(1) - \arctan(-1)\right) = \frac{1}{2} \left(\frac{\pi}{4} - (-\frac{\pi}{4})\right) = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}=21(arctan(1)−arctan(−1))=21(4π−(−4π))=21⋅2π=4π3. 最終的な答え(1) π3\frac{\pi}{3}3π(2) π4\frac{\pi}{4}4π