与えられた関数 $y = x^4$ および $y = x^5$ の導関数を、公式 $(x^n)' = nx^{n-1}$ を用いて求める問題です。

解析学微分導関数冪関数微分公式
2025/5/28

1. 問題の内容

与えられた関数 y=x4y = x^4 および y=x5y = x^5 の導関数を、公式 (xn)=nxn1(x^n)' = nx^{n-1} を用いて求める問題です。

2. 解き方の手順

(1) y=x4y = x^4 の場合:
公式 (xn)=nxn1(x^n)' = nx^{n-1} を適用します。ここで、n=4n = 4 です。
したがって、
y=(x4)=4x41=4x3y' = (x^4)' = 4x^{4-1} = 4x^3
(2) y=x5y = x^5 の場合:
公式 (xn)=nxn1(x^n)' = nx^{n-1} を適用します。ここで、n=5n = 5 です。
したがって、
y=(x5)=5x51=5x4y' = (x^5)' = 5x^{5-1} = 5x^4

3. 最終的な答え

(1) y=x4y = x^4 の導関数は 4x34x^3
(2) y=x5y = x^5 の導関数は 5x45x^4

「解析学」の関連問題

与えられた極限 $\lim_{a \to 0} \frac{e^a - 1 - a}{a^2} = \frac{1}{2}$ を用いて、極限 $\lim_{x \to 0} (\frac{1}{\lo...

極限マクローリン展開ロピタルの定理
2025/5/30

問題は、$\lim_{x \to +0} (\frac{1}{\log(1+x)} - \frac{1}{x})$ を求める問題です。ただし、$\lim_{a \to +0} \frac{e^a - ...

極限テイラー展開ロピタルの定理
2025/5/30

問題は、関数 $y = \sqrt{x}$ の $n$ 次導関数を求めることです。

導関数微分累次微分関数べき乗
2025/5/30

放物線 $y = x^2$ 上の点 $A(-2, 4)$ における接線を $l$、点 $B(3, 9)$ における接線を $m$ とする。 - 直線 $l$ の方程式を求め、直線 $m$ の方程式を求...

微分接線放物線導関数方程式
2025/5/30

ベクトル関数 $\mathbf{r} = \mathbf{r}(t)$ が与えられたとき、次の等式が成り立つことを証明します。 $(\mathbf{r} \times \mathbf{r}')' = ...

ベクトル解析外積積の微分法則ベクトル関数
2025/5/30

ベクトル関数 $\mathbf{r} = \mathbf{r}(t)$ に対して、以下の等式を証明します。 $(\mathbf{r} \times \mathbf{r}')' = \mathbf{r}...

ベクトルベクトル関数外積微分
2025/5/30

10. ベクトル関数 $\mathbf{a}(t) = (3t, t^2 - 1, 1)$ と $\mathbf{b}(t) = (1, t+2, -t^2)$ が与えられたとき、以下のものを求めます...

ベクトル関数微分外積内積
2025/5/30

はい、承知いたしました。画像にある数学の問題を解いていきます。

ベクトル微分外積内積積の微分法則
2025/5/30

$f(x) = kx^2$ (ただし、$0 < a < 1$, $k > 0$) について、以下の積分 $A, B, C, D, E, F$ の大小関係に関する記述のうち、正しいものを選ぶ問題です。 ...

積分定積分大小比較関数
2025/5/30

$f(x) = kx^2$ ($0<a<1, k>0$) が与えられている。 $A = \int_0^1 f(x) dx$, $B = \int_a^1 f(x) dx$, $C = \int_0^a...

積分定積分関数不等式比較
2025/5/30