以下の3つの計算問題を解く。 (1) $2^0 \div 2^{-4}$ (3) $0.125^{-\frac{2}{3}}$ (5) $\sqrt{6} \times \sqrt[4]{54} \div \sqrt[4]{6}$代数学指数累乗根計算2025/5/291. 問題の内容以下の3つの計算問題を解く。(1) 20÷2−42^0 \div 2^{-4}20÷2−4(3) 0.125−230.125^{-\frac{2}{3}}0.125−32(5) 6×544÷64\sqrt{6} \times \sqrt[4]{54} \div \sqrt[4]{6}6×454÷462. 解き方の手順(1) 20÷2−42^0 \div 2^{-4}20÷2−4 の計算20=12^0 = 120=12−4=124=1162^{-4} = \frac{1}{2^4} = \frac{1}{16}2−4=241=16120÷2−4=1÷116=1×16=162^0 \div 2^{-4} = 1 \div \frac{1}{16} = 1 \times 16 = 1620÷2−4=1÷161=1×16=16(3) 0.125−230.125^{-\frac{2}{3}}0.125−32 の計算0.125=1251000=180.125 = \frac{125}{1000} = \frac{1}{8}0.125=1000125=810.125−23=(18)−23=(8−1)−23=8230.125^{-\frac{2}{3}} = (\frac{1}{8})^{-\frac{2}{3}} = (8^{-1})^{-\frac{2}{3}} = 8^{\frac{2}{3}}0.125−32=(81)−32=(8−1)−32=832823=(813)2=22=48^{\frac{2}{3}} = (8^{\frac{1}{3}})^2 = 2^2 = 4832=(831)2=22=4(5) 6×544÷64\sqrt{6} \times \sqrt[4]{54} \div \sqrt[4]{6}6×454÷46 の計算6=612=624=624=364\sqrt{6} = 6^{\frac{1}{2}} = 6^{\frac{2}{4}} = \sqrt[4]{6^2} = \sqrt[4]{36}6=621=642=462=436544=2×274=2×334\sqrt[4]{54} = \sqrt[4]{2 \times 27} = \sqrt[4]{2 \times 3^3}454=42×27=42×336×544÷64=364×544÷64=36×54464=36×5464=6×6×6×964=6×6×94=36×94=3244\sqrt{6} \times \sqrt[4]{54} \div \sqrt[4]{6} = \sqrt[4]{36} \times \sqrt[4]{54} \div \sqrt[4]{6} = \frac{\sqrt[4]{36 \times 54}}{\sqrt[4]{6}} = \sqrt[4]{\frac{36 \times 54}{6}} = \sqrt[4]{\frac{6 \times 6 \times 6 \times 9}{6}} = \sqrt[4]{6 \times 6 \times 9} = \sqrt[4]{36 \times 9} = \sqrt[4]{324}6×454÷46=436×454÷46=46436×54=4636×54=466×6×6×9=46×6×9=436×9=4324324=4×81=22×34324 = 4 \times 81 = 2^2 \times 3^4324=4×81=22×343244=22×344=3×44=3×2\sqrt[4]{324} = \sqrt[4]{2^2 \times 3^4} = 3 \times \sqrt[4]{4} = 3 \times \sqrt{2}4324=422×34=3×44=3×23. 最終的な答え(1) 16(3) 4(5) 323 \sqrt{2}32