次の和を求めよ。 $3 \cdot 2 + 6 \cdot 3 + 9 \cdot 4 + \dots + 3n(n+1)$代数学数列シグマ総和公式適用2025/5/301. 問題の内容次の和を求めよ。3⋅2+6⋅3+9⋅4+⋯+3n(n+1)3 \cdot 2 + 6 \cdot 3 + 9 \cdot 4 + \dots + 3n(n+1)3⋅2+6⋅3+9⋅4+⋯+3n(n+1)2. 解き方の手順この数列の一般項を aka_kak とすると、ak=3k(k+1)a_k = 3k(k+1)ak=3k(k+1)したがって、求める和を SSS とすると、S=∑k=1n3k(k+1)S = \sum_{k=1}^{n} 3k(k+1)S=∑k=1n3k(k+1)=∑k=1n(3k2+3k)= \sum_{k=1}^{n} (3k^2 + 3k)=∑k=1n(3k2+3k)=3∑k=1nk2+3∑k=1nk= 3 \sum_{k=1}^{n} k^2 + 3 \sum_{k=1}^{n} k=3∑k=1nk2+3∑k=1nk∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)これらを代入すると、S=3⋅n(n+1)(2n+1)6+3⋅n(n+1)2S = 3 \cdot \frac{n(n+1)(2n+1)}{6} + 3 \cdot \frac{n(n+1)}{2}S=3⋅6n(n+1)(2n+1)+3⋅2n(n+1)=n(n+1)(2n+1)2+3n(n+1)2= \frac{n(n+1)(2n+1)}{2} + \frac{3n(n+1)}{2}=2n(n+1)(2n+1)+23n(n+1)=n(n+1)(2n+1+3)2= \frac{n(n+1)(2n+1 + 3)}{2}=2n(n+1)(2n+1+3)=n(n+1)(2n+4)2= \frac{n(n+1)(2n+4)}{2}=2n(n+1)(2n+4)=2n(n+1)(n+2)2= \frac{2n(n+1)(n+2)}{2}=22n(n+1)(n+2)=n(n+1)(n+2)= n(n+1)(n+2)=n(n+1)(n+2)3. 最終的な答えn(n+1)(n+2)n(n+1)(n+2)n(n+1)(n+2)