$z = f(x, y)$は、偏導関数がすべて存在し、かつ偏導関数がすべて連続とする。このとき、$x, y$を座標$(\xi, \eta)$に座標変換すると、以下の式が成り立つことを示せ。 $\frac{\partial z}{\partial x} = \frac{\frac{\partial y}{\partial \eta} \frac{\partial z}{\partial \xi} - \frac{\partial y}{\partial \xi} \frac{\partial z}{\partial \eta}}{J}$ $\frac{\partial z}{\partial y} = \frac{\frac{\partial x}{\partial \xi} \frac{\partial z}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial z}{\partial \xi}}{J}$ ここで、$J = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}$である。

解析学偏微分連鎖律座標変換ヤコビアン
2025/5/29

1. 問題の内容

z=f(x,y)z = f(x, y)は、偏導関数がすべて存在し、かつ偏導関数がすべて連続とする。このとき、x,yx, yを座標(ξ,η)(\xi, \eta)に座標変換すると、以下の式が成り立つことを示せ。
zx=yηzξyξzηJ\frac{\partial z}{\partial x} = \frac{\frac{\partial y}{\partial \eta} \frac{\partial z}{\partial \xi} - \frac{\partial y}{\partial \xi} \frac{\partial z}{\partial \eta}}{J}
zy=xξzηxηzξJ\frac{\partial z}{\partial y} = \frac{\frac{\partial x}{\partial \xi} \frac{\partial z}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial z}{\partial \xi}}{J}
ここで、J=xξyηxηyξJ = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}である。

2. 解き方の手順

まず、zzξ\xiη\etaで偏微分することを考える。連鎖律より、
zξ=zxxξ+zyyξ\frac{\partial z}{\partial \xi} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \xi} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \xi}
zη=zxxη+zyyη\frac{\partial z}{\partial \eta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \eta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \eta}
この連立方程式をzx\frac{\partial z}{\partial x}zy\frac{\partial z}{\partial y}について解くことを目指す。
1つ目の式にyη\frac{\partial y}{\partial \eta}をかけ、2つ目の式にyξ\frac{\partial y}{\partial \xi}をかけると、
zξyη=zxxξyη+zyyξyη\frac{\partial z}{\partial \xi}\frac{\partial y}{\partial \eta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \xi}\frac{\partial y}{\partial \eta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \xi}\frac{\partial y}{\partial \eta}
zηyξ=zxxηyξ+zyyηyξ\frac{\partial z}{\partial \eta}\frac{\partial y}{\partial \xi} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \eta}\frac{\partial y}{\partial \xi} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \eta}\frac{\partial y}{\partial \xi}
上の式から下の式を引くと、
zξyηzηy\Partialξ=zx(xξyηxηyξ)\frac{\partial z}{\partial \xi}\frac{\partial y}{\partial \eta} - \frac{\partial z}{\partial \eta}\frac{\partial y}{\Partial\xi} = \frac{\partial z}{\partial x} (\frac{\partial x}{\partial \xi}\frac{\partial y}{\partial \eta} - \frac{\partial x}{\partial \eta}\frac{\partial y}{\partial \xi})
よって、
zx=yηzξyξzηxξyηxηyξ=yηzξyξzηJ\frac{\partial z}{\partial x} = \frac{\frac{\partial y}{\partial \eta} \frac{\partial z}{\partial \xi} - \frac{\partial y}{\partial \xi} \frac{\partial z}{\partial \eta}}{\frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}} = \frac{\frac{\partial y}{\partial \eta} \frac{\partial z}{\partial \xi} - \frac{\partial y}{\partial \xi} \frac{\partial z}{\partial \eta}}{J}
同様に、1つ目の式にxη\frac{\partial x}{\partial \eta}をかけ、2つ目の式にxξ\frac{\partial x}{\partial \xi}をかけると、
zξxη=zxxξxη+zyyξxη\frac{\partial z}{\partial \xi}\frac{\partial x}{\partial \eta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \xi}\frac{\partial x}{\partial \eta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \xi}\frac{\partial x}{\partial \eta}
zηxξ=zxxηxξ+zyyηxξ\frac{\partial z}{\partial \eta}\frac{\partial x}{\partial \xi} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \eta}\frac{\partial x}{\partial \xi} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \eta}\frac{\partial x}{\partial \xi}
下の式から上の式を引くと、
zηxξzξxη=zy(yηxξyξxη)\frac{\partial z}{\partial \eta}\frac{\partial x}{\partial \xi} - \frac{\partial z}{\partial \xi}\frac{\partial x}{\partial \eta} = \frac{\partial z}{\partial y} (\frac{\partial y}{\partial \eta}\frac{\partial x}{\partial \xi} - \frac{\partial y}{\partial \xi}\frac{\partial x}{\partial \eta})
よって、
zy=xξzηxηzξxξyηxηyξ=xξzηxηzξJ\frac{\partial z}{\partial y} = \frac{\frac{\partial x}{\partial \xi} \frac{\partial z}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial z}{\partial \xi}}{\frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}} = \frac{\frac{\partial x}{\partial \xi} \frac{\partial z}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial z}{\partial \xi}}{J}

3. 最終的な答え

zx=yηzξyξzηJ\frac{\partial z}{\partial x} = \frac{\frac{\partial y}{\partial \eta} \frac{\partial z}{\partial \xi} - \frac{\partial y}{\partial \xi} \frac{\partial z}{\partial \eta}}{J}
zy=xξzηxηzξJ\frac{\partial z}{\partial y} = \frac{\frac{\partial x}{\partial \xi} \frac{\partial z}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial z}{\partial \xi}}{J}