次の3つの和を求める問題です。 (1) $\sum_{k=1}^{n} (4k+3)$ (2) $\sum_{k=1}^{n} (3k^2+k-2)$ (3) $\sum_{k=1}^{n} k(2k^2+1)$代数学級数シグマ公式計算2025/5/291. 問題の内容次の3つの和を求める問題です。(1) ∑k=1n(4k+3)\sum_{k=1}^{n} (4k+3)∑k=1n(4k+3)(2) ∑k=1n(3k2+k−2)\sum_{k=1}^{n} (3k^2+k-2)∑k=1n(3k2+k−2)(3) ∑k=1nk(2k2+1)\sum_{k=1}^{n} k(2k^2+1)∑k=1nk(2k2+1)2. 解き方の手順(1)∑k=1n(4k+3)=4∑k=1nk+∑k=1n3\sum_{k=1}^{n} (4k+3) = 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 3∑k=1n(4k+3)=4∑k=1nk+∑k=1n3∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n3=3n\sum_{k=1}^{n} 3 = 3n∑k=1n3=3nよって、∑k=1n(4k+3)=4n(n+1)2+3n=2n(n+1)+3n=2n2+2n+3n=2n2+5n=n(2n+5)\sum_{k=1}^{n} (4k+3) = 4\frac{n(n+1)}{2} + 3n = 2n(n+1) + 3n = 2n^2 + 2n + 3n = 2n^2 + 5n = n(2n+5)∑k=1n(4k+3)=42n(n+1)+3n=2n(n+1)+3n=2n2+2n+3n=2n2+5n=n(2n+5)(2)∑k=1n(3k2+k−2)=3∑k=1nk2+∑k=1nk−∑k=1n2\sum_{k=1}^{n} (3k^2+k-2) = 3\sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k - \sum_{k=1}^{n} 2∑k=1n(3k2+k−2)=3∑k=1nk2+∑k=1nk−∑k=1n2∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n2=2n\sum_{k=1}^{n} 2 = 2n∑k=1n2=2nよって、∑k=1n(3k2+k−2)=3n(n+1)(2n+1)6+n(n+1)2−2n=n(n+1)(2n+1)2+n(n+1)2−2n\sum_{k=1}^{n} (3k^2+k-2) = 3\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} - 2n = \frac{n(n+1)(2n+1)}{2} + \frac{n(n+1)}{2} - 2n∑k=1n(3k2+k−2)=36n(n+1)(2n+1)+2n(n+1)−2n=2n(n+1)(2n+1)+2n(n+1)−2n=n(n+1)(2n+1)+n(n+1)−4n2=n[(n+1)(2n+1)+(n+1)−4]2=n[2n2+3n+1+n+1−4]2= \frac{n(n+1)(2n+1) + n(n+1) - 4n}{2} = \frac{n[(n+1)(2n+1) + (n+1) - 4]}{2} = \frac{n[2n^2 + 3n + 1 + n + 1 - 4]}{2}=2n(n+1)(2n+1)+n(n+1)−4n=2n[(n+1)(2n+1)+(n+1)−4]=2n[2n2+3n+1+n+1−4]=n(2n2+4n−2)2=2n(n2+2n−1)2=n(n2+2n−1)= \frac{n(2n^2 + 4n - 2)}{2} = \frac{2n(n^2 + 2n - 1)}{2} = n(n^2 + 2n - 1)=2n(2n2+4n−2)=22n(n2+2n−1)=n(n2+2n−1)=n3+2n2−n= n^3 + 2n^2 - n=n3+2n2−n(3)∑k=1nk(2k2+1)=∑k=1n(2k3+k)=2∑k=1nk3+∑k=1nk\sum_{k=1}^{n} k(2k^2+1) = \sum_{k=1}^{n} (2k^3+k) = 2\sum_{k=1}^{n} k^3 + \sum_{k=1}^{n} k∑k=1nk(2k2+1)=∑k=1n(2k3+k)=2∑k=1nk3+∑k=1nk∑k=1nk3=(n(n+1)2)2\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2∑k=1nk3=(2n(n+1))2∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)よって、∑k=1nk(2k2+1)=2(n(n+1)2)2+n(n+1)2=2n2(n+1)24+n(n+1)2=n2(n+1)22+n(n+1)2=n(n+1)[n(n+1)+1]2=n(n+1)(n2+n+1)2\sum_{k=1}^{n} k(2k^2+1) = 2\left(\frac{n(n+1)}{2}\right)^2 + \frac{n(n+1)}{2} = 2\frac{n^2(n+1)^2}{4} + \frac{n(n+1)}{2} = \frac{n^2(n+1)^2}{2} + \frac{n(n+1)}{2} = \frac{n(n+1)[n(n+1) + 1]}{2} = \frac{n(n+1)(n^2 + n + 1)}{2}∑k=1nk(2k2+1)=2(2n(n+1))2+2n(n+1)=24n2(n+1)2+2n(n+1)=2n2(n+1)2+2n(n+1)=2n(n+1)[n(n+1)+1]=2n(n+1)(n2+n+1)=n(n+1)(n2+n+1)2=n(n3+n2+n+n2+n+1)2=n(n3+2n2+2n+1)2= \frac{n(n+1)(n^2+n+1)}{2} = \frac{n(n^3 + n^2 + n + n^2 + n + 1)}{2} = \frac{n(n^3 + 2n^2 + 2n + 1)}{2}=2n(n+1)(n2+n+1)=2n(n3+n2+n+n2+n+1)=2n(n3+2n2+2n+1)=n4+2n3+2n2+n2= \frac{n^4 + 2n^3 + 2n^2 + n}{2}=2n4+2n3+2n2+n3. 最終的な答え(1) n(2n+5)n(2n+5)n(2n+5)(2) n3+2n2−nn^3 + 2n^2 - nn3+2n2−n(3) n(n+1)(n2+n+1)2=n4+2n3+2n2+n2\frac{n(n+1)(n^2+n+1)}{2} = \frac{n^4 + 2n^3 + 2n^2 + n}{2}2n(n+1)(n2+n+1)=2n4+2n3+2n2+n