関数 $y = 3x^2 + 5x - 6$ のグラフ上の点 $(-3, 6)$ における接線の方程式を求める。

解析学微分接線導関数関数のグラフ
2025/3/26

1. 問題の内容

関数 y=3x2+5x6y = 3x^2 + 5x - 6 のグラフ上の点 (3,6)(-3, 6) における接線の方程式を求める。

2. 解き方の手順

(1) 関数の導関数を求める。
y=ddx(3x2+5x6)y' = \frac{d}{dx}(3x^2 + 5x - 6)
y=6x+5y' = 6x + 5
(2) 点 (3,6)(-3, 6) における接線の傾きを求める。これは、導関数 yy'x=3x = -3 を代入することで得られる。
m=y(3)=6(3)+5=18+5=13m = y'(-3) = 6(-3) + 5 = -18 + 5 = -13
(3) 接線の方程式を求める。点 (x1,y1)(x_1, y_1) を通り、傾きが mm の直線の方程式は yy1=m(xx1)y - y_1 = m(x - x_1) で表される。
この問題では、(x1,y1)=(3,6)(x_1, y_1) = (-3, 6) であり、m=13m = -13 であるため、
y6=13(x(3))y - 6 = -13(x - (-3))
y6=13(x+3)y - 6 = -13(x + 3)
y6=13x39y - 6 = -13x - 39
y=13x39+6y = -13x - 39 + 6
y=13x33y = -13x - 33

3. 最終的な答え

y=13x33y = -13x - 33

「解析学」の関連問題

$0 < a < b$ を満たす定数 $a, b$ があり、$y = \log x$ のグラフを $G$ とする。曲線 $G$ 上の点 $C$ が点 $A(a, \log a)$ から点 $B(b, ...

対数関数平均値の定理微分最大値不等式
2025/5/31

関数 $y = \log x$ 上の点A $(a, \log a)$ から点B $(b, \log b)$ まで動くとき、曲線上の点Cからx軸への垂線の足をPとし、線分CPの長さの最大値をLとする。以...

対数関数微分平均値の定理最大値不等式
2025/5/31

問題は以下の2つの部分から構成されています。 (1) $0 < a < b$ を満たす定数 $a, b$ が与えられたとき、不等式 $a < \frac{b-a}{\log b - \log a} <...

不等式平均値の定理対数関数最大値微分
2025/5/31

与えられた関数 $f(x, y)$ について、条件 $g(x, y) = 0$ の下で、ラグランジュの未定乗数法を用いて、その最大値と最小値を求める。問題には4つのケースが含まれる。

ラグランジュの未定乗数法最大値最小値多変数関数偏微分
2025/5/31

与えられた無限級数 $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ の値を求める問題です。

無限級数部分分数分解収束級数の和
2025/5/31

媒介変数 $t$ を用いて表された関数 $y = f(x)$ について、以下の問いに答えます。 (1) 関数 $f(x)$ の極値を求めます。 (2) $\cos(4t \pm 3t) = \cos ...

媒介変数表示極値積分面積三角関数
2025/5/31

与えられた6つの関数について、それぞれの定義域と値域を求める問題です。

関数の定義域関数の値域分数関数二次関数平方根
2025/5/31

与えられた関数 $f(x) = \frac{1}{1+x^2}$ の $x=0$ におけるテイラー展開(マクローリン展開)を求める問題です。

テイラー展開マクローリン展開級数関数等比数列
2025/5/31

媒介変数 $t$ で表された関数 $x = -\cos(3t)$, $y = \sin(4t)$ ($0 \le t \le \frac{\pi}{4}$)で定義される関数 $y=f(x)$ について...

媒介変数表示微分積分増減面積
2025/5/31

次の関数について、$x=0$ におけるテイラー展開(マクローリン展開)を求め、収束域を求める問題です。対象となる関数は以下の10個です。 (1) $\cosh x$ (2) $\sinh x$ (3)...

テイラー展開マクローリン展開収束域関数
2025/5/31