整式 $A = 3x^2 - x + 2$ と $B = -x^2 - 2x - 4$ が与えられています。 $2A + 3B$ と $3A - 2B$ を計算します。代数学整式多項式計算2025/5/291. 問題の内容整式 A=3x2−x+2A = 3x^2 - x + 2A=3x2−x+2 と B=−x2−2x−4B = -x^2 - 2x - 4B=−x2−2x−4 が与えられています。2A+3B2A + 3B2A+3B と 3A−2B3A - 2B3A−2B を計算します。2. 解き方の手順まず、2A+3B2A + 3B2A+3B を計算します。2A=2(3x2−x+2)=6x2−2x+42A = 2(3x^2 - x + 2) = 6x^2 - 2x + 42A=2(3x2−x+2)=6x2−2x+43B=3(−x2−2x−4)=−3x2−6x−123B = 3(-x^2 - 2x - 4) = -3x^2 - 6x - 123B=3(−x2−2x−4)=−3x2−6x−122A+3B=(6x2−2x+4)+(−3x2−6x−12)2A + 3B = (6x^2 - 2x + 4) + (-3x^2 - 6x - 12)2A+3B=(6x2−2x+4)+(−3x2−6x−12)2A+3B=6x2−3x2−2x−6x+4−122A + 3B = 6x^2 - 3x^2 - 2x - 6x + 4 - 122A+3B=6x2−3x2−2x−6x+4−122A+3B=3x2−8x−82A + 3B = 3x^2 - 8x - 82A+3B=3x2−8x−8次に、3A−2B3A - 2B3A−2B を計算します。3A=3(3x2−x+2)=9x2−3x+63A = 3(3x^2 - x + 2) = 9x^2 - 3x + 63A=3(3x2−x+2)=9x2−3x+62B=2(−x2−2x−4)=−2x2−4x−82B = 2(-x^2 - 2x - 4) = -2x^2 - 4x - 82B=2(−x2−2x−4)=−2x2−4x−83A−2B=(9x2−3x+6)−(−2x2−4x−8)3A - 2B = (9x^2 - 3x + 6) - (-2x^2 - 4x - 8)3A−2B=(9x2−3x+6)−(−2x2−4x−8)3A−2B=9x2−3x+6+2x2+4x+83A - 2B = 9x^2 - 3x + 6 + 2x^2 + 4x + 83A−2B=9x2−3x+6+2x2+4x+83A−2B=9x2+2x2−3x+4x+6+83A - 2B = 9x^2 + 2x^2 - 3x + 4x + 6 + 83A−2B=9x2+2x2−3x+4x+6+83A−2B=11x2+x+143A - 2B = 11x^2 + x + 143A−2B=11x2+x+143. 最終的な答え2A+3B=3x2−8x−82A + 3B = 3x^2 - 8x - 82A+3B=3x2−8x−83A−2B=11x2+x+143A - 2B = 11x^2 + x + 143A−2B=11x2+x+14