問題は、Y市における同居児の有無と女性の就業割合に関する表が与えられており、その表の中で、同居児がいて配偶者がいない35-39歳の女性の就業割合が欠損している。この欠損値を表の他のデータから推測し、選択肢の中から最も適切な値を選ぶ問題です。

確率論・統計学統計欠損値推定データの分析
2025/5/29

1. 問題の内容

問題は、Y市における同居児の有無と女性の就業割合に関する表が与えられており、その表の中で、同居児がいて配偶者がいない35-39歳の女性の就業割合が欠損している。この欠損値を表の他のデータから推測し、選択肢の中から最も適切な値を選ぶ問題です。

2. 解き方の手順

* 与えられた表から、同居児がいて配偶者がいない女性の就業割合の推移をみます。20-24歳から40-44歳までのデータを見ると、25.1%, 29.6%, 37.5%, ?, 65.4% となっています。
* 20代から40代にかけて、就業割合が増加している傾向が見られます。特に、30-34歳から40-44歳にかけての増加が大きいです。この増加傾向を考慮して、35-39歳の値を推測します。
* 同居児ありの配偶者なしの女性について、25-29歳から30-34歳にかけては 87.668.4=19.287.6 - 68.4 = 19.2%の増加です。30-34歳から40-44歳にかけては、90.387.6=2.790.3 - 87.6 = 2.7% の増加です。単純な比例関係はありませんが、20代から40代にかけて増加傾向にあることを考慮すると、35-39歳の値は30-34歳と40-44歳の間にあると予想されます。
* 選択肢の中で、上記の傾向に最も当てはまるのは89.7%です。ほかの選択肢との整合性を考えると、89.7%が最も自然な値であると考えられます。

3. 最終的な答え

89.7%

「確率論・統計学」の関連問題

杉の木が伝染病にかかる確率が $1/100$ であり、その伝染病にかかった場合、10本のうち9本が枯れるという。杉の木がこの伝染病で枯れる確率を求める問題です。

確率条件付き確率掛け算
2025/5/30

男子3人と女子5人が1列に並ぶときの並び方について、以下の条件を満たす場合の数を求めます。 (1) 男子3人が続いて並ぶ。 (4) 男子3人が続いて並び、女子5人も続いて並ぶ。 (5) どの男子も隣り...

順列組合せ場合の数
2025/5/30

男子3人、女子4人が一列に並ぶとき、次の条件を満たす並び方は何通りあるか。 (1) 両端がいずれも女子である。 (2) 男子3人が連なって並ぶ。 (3) 女子4人が連なって並ばない。

順列組み合わせ場合の数数え上げ
2025/5/30

5つの枠にA, B, Cの3種類のスタンプを左から順に押すとき、以下の問いに答える問題です。 (1) スタンプの押し方は何通りあるか。 (2) Aのスタンプを少なくとも1回使うような押し方は何通りある...

場合の数組み合わせ確率
2025/5/30

大人3人、子供5人の中から4人を選ぶとき、以下の条件を満たす選び方は何通りあるか。 (1) 大人2人と子供2人を選ぶ。 (2) 大人が少なくとも1人含まれるように選ぶ。

組み合わせ場合の数二項係数
2025/5/30

白玉5個、赤玉3個が入っている袋から、玉を1個ずつ4回取り出すとき、同じ色の玉が3回以上続いて出る確率を求めます。ただし、取り出した玉は元に戻しません。

確率事象組み合わせ玉取り出し
2025/5/30

A, Bの2人がじゃんけんをする。どちらかが先に3回勝った時点でゲームを終了する。引き分けはないものとする。このとき、勝負の分かれ方は何通りあるか。

確率場合の数組み合わせ
2025/5/30

大小中3つのサイコロを投げたとき、出た目の積が偶数になる場合の数を求める問題です。

確率場合の数サイコロ偶数
2025/5/30

1つのサイコロを2回投げたとき、出た目の数の和が3の倍数になる場合の数を求める問題です。

確率サイコロ場合の数組み合わせ
2025/5/30

与えられたデータ $1, 1, 2, 3, 3, 4, 4, 6$ について、以下の問いに答える問題です。 (1) 平均値を求める。 (2) 表を埋める(偏差、偏差の二乗)。 (3) 分散を求める。 ...

平均分散標準偏差データの分析
2025/5/30