### 問題1
多項式をA, Bとすると、問題文より以下の式が成り立つ。
A+B=6x3+2x2−3x−4 (1) A−B=2x3−6x2+3x+12 (2) (1) + (2) より、
2A=(6x3+2x2−3x−4)+(2x3−6x2+3x+12) 2A=8x3−4x2+8 A=4x3−2x2+4 (1) - (2) より、
2B=(6x3+2x2−3x−4)−(2x3−6x2+3x+12) 2B=4x3+8x2−6x−16 B=2x3+4x2−3x−8 ### 問題2
(1) (3x−1)(x2+7x−5) =3x(x2+7x−5)−1(x2+7x−5) =3x3+21x2−15x−x2−7x+5 =3x3+20x2−22x+5 (2) (x2−x+1)2 =(x2−x+1)(x2−x+1) =x2(x2−x+1)−x(x2−x+1)+1(x2−x+1) =x4−x3+x2−x3+x2−x+x2−x+1 =x4−2x3+3x2−2x+1 (3) (a−2b−21c)(a+2b+21c) =(a−(2b+21c))(a+(2b+21c)) =a2−(2b+21c)2 =a2−(4b2+2bc+41c2) =a2−4b2−2bc−41c2 (4) (x−1)(x−2)(x+3)(x+6) =(x−1)(x+3)(x−2)(x+6) =(x2+2x−3)(x2+4x−12) =x2(x2+4x−12)+2x(x2+4x−12)−3(x2+4x−12) =x4+4x3−12x2+2x3+8x2−24x−3x2−12x+36 =x4+6x3−7x2−36x+36 ##