与えられた9つの関数を $x$ で微分する問題です。解析学微分関数の微分累乗根分数指数2025/5/291. 問題の内容与えられた9つの関数を xxx で微分する問題です。2. 解き方の手順関数の微分は、次の公式を利用します。ddxxn=nxn−1\frac{d}{dx}x^n = nx^{n-1}dxdxn=nxn−1(1) y=x25y = x^{\frac{2}{5}}y=x52dydx=25x25−1=25x−35\frac{dy}{dx} = \frac{2}{5} x^{\frac{2}{5}-1} = \frac{2}{5} x^{-\frac{3}{5}}dxdy=52x52−1=52x−53(2) y=1x=x−1y = \frac{1}{x} = x^{-1}y=x1=x−1dydx=−1⋅x−1−1=−x−2=−1x2\frac{dy}{dx} = -1 \cdot x^{-1-1} = -x^{-2} = -\frac{1}{x^2}dxdy=−1⋅x−1−1=−x−2=−x21(3) y=x4=x14y = \sqrt[4]{x} = x^{\frac{1}{4}}y=4x=x41dydx=14x14−1=14x−34=14x34\frac{dy}{dx} = \frac{1}{4} x^{\frac{1}{4}-1} = \frac{1}{4} x^{-\frac{3}{4}} = \frac{1}{4\sqrt[4]{x^3}}dxdy=41x41−1=41x−43=44x31(4) y=x53=x53y = \sqrt[3]{x^5} = x^{\frac{5}{3}}y=3x5=x35dydx=53x53−1=53x23=53x23\frac{dy}{dx} = \frac{5}{3} x^{\frac{5}{3}-1} = \frac{5}{3} x^{\frac{2}{3}} = \frac{5}{3}\sqrt[3]{x^2}dxdy=35x35−1=35x32=353x2(5) y=x=x12y = \sqrt{x} = x^{\frac{1}{2}}y=x=x21dydx=12x12−1=12x−12=12x\frac{dy}{dx} = \frac{1}{2} x^{\frac{1}{2}-1} = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}dxdy=21x21−1=21x−21=2x1(6) y=1x=x−12y = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}y=x1=x−21dydx=−12x−12−1=−12x−32=−12x3\frac{dy}{dx} = -\frac{1}{2} x^{-\frac{1}{2}-1} = -\frac{1}{2} x^{-\frac{3}{2}} = -\frac{1}{2\sqrt{x^3}}dxdy=−21x−21−1=−21x−23=−2x31(7) y=−3x3=−3x−3y = -\frac{3}{x^3} = -3x^{-3}y=−x33=−3x−3dydx=−3⋅(−3)x−3−1=9x−4=9x4\frac{dy}{dx} = -3 \cdot (-3) x^{-3-1} = 9 x^{-4} = \frac{9}{x^4}dxdy=−3⋅(−3)x−3−1=9x−4=x49(8) y=x2x=x2⋅x12=x52y = x^2 \sqrt{x} = x^2 \cdot x^{\frac{1}{2}} = x^{\frac{5}{2}}y=x2x=x2⋅x21=x25dydx=52x52−1=52x32=52xx\frac{dy}{dx} = \frac{5}{2} x^{\frac{5}{2}-1} = \frac{5}{2} x^{\frac{3}{2}} = \frac{5}{2} x\sqrt{x}dxdy=25x25−1=25x23=25xx(9) y=xx3=x12x13=x12−13=x16y = \frac{\sqrt{x}}{\sqrt[3]{x}} = \frac{x^{\frac{1}{2}}}{x^{\frac{1}{3}}} = x^{\frac{1}{2}-\frac{1}{3}} = x^{\frac{1}{6}}y=3xx=x31x21=x21−31=x61dydx=16x16−1=16x−56=16x56\frac{dy}{dx} = \frac{1}{6} x^{\frac{1}{6}-1} = \frac{1}{6} x^{-\frac{5}{6}} = \frac{1}{6\sqrt[6]{x^5}}dxdy=61x61−1=61x−65=66x513. 最終的な答え(1) dydx=25x−35\frac{dy}{dx} = \frac{2}{5} x^{-\frac{3}{5}}dxdy=52x−53(2) dydx=−1x2\frac{dy}{dx} = -\frac{1}{x^2}dxdy=−x21(3) dydx=14x−34\frac{dy}{dx} = \frac{1}{4} x^{-\frac{3}{4}}dxdy=41x−43(4) dydx=53x23\frac{dy}{dx} = \frac{5}{3} x^{\frac{2}{3}}dxdy=35x32(5) dydx=12x−12\frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}}dxdy=21x−21(6) dydx=−12x−32\frac{dy}{dx} = -\frac{1}{2} x^{-\frac{3}{2}}dxdy=−21x−23(7) dydx=9x4\frac{dy}{dx} = \frac{9}{x^4}dxdy=x49(8) dydx=52x32\frac{dy}{dx} = \frac{5}{2} x^{\frac{3}{2}}dxdy=25x23(9) dydx=16x−56\frac{dy}{dx} = \frac{1}{6} x^{-\frac{5}{6}}dxdy=61x−65