与えられた9つの関数を $x$ で微分する問題です。

解析学微分関数の微分累乗根分数指数
2025/5/29

1. 問題の内容

与えられた9つの関数を xx で微分する問題です。

2. 解き方の手順

関数の微分は、次の公式を利用します。
ddxxn=nxn1\frac{d}{dx}x^n = nx^{n-1}
(1) y=x25y = x^{\frac{2}{5}}
dydx=25x251=25x35\frac{dy}{dx} = \frac{2}{5} x^{\frac{2}{5}-1} = \frac{2}{5} x^{-\frac{3}{5}}
(2) y=1x=x1y = \frac{1}{x} = x^{-1}
dydx=1x11=x2=1x2\frac{dy}{dx} = -1 \cdot x^{-1-1} = -x^{-2} = -\frac{1}{x^2}
(3) y=x4=x14y = \sqrt[4]{x} = x^{\frac{1}{4}}
dydx=14x141=14x34=14x34\frac{dy}{dx} = \frac{1}{4} x^{\frac{1}{4}-1} = \frac{1}{4} x^{-\frac{3}{4}} = \frac{1}{4\sqrt[4]{x^3}}
(4) y=x53=x53y = \sqrt[3]{x^5} = x^{\frac{5}{3}}
dydx=53x531=53x23=53x23\frac{dy}{dx} = \frac{5}{3} x^{\frac{5}{3}-1} = \frac{5}{3} x^{\frac{2}{3}} = \frac{5}{3}\sqrt[3]{x^2}
(5) y=x=x12y = \sqrt{x} = x^{\frac{1}{2}}
dydx=12x121=12x12=12x\frac{dy}{dx} = \frac{1}{2} x^{\frac{1}{2}-1} = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}
(6) y=1x=x12y = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}
dydx=12x121=12x32=12x3\frac{dy}{dx} = -\frac{1}{2} x^{-\frac{1}{2}-1} = -\frac{1}{2} x^{-\frac{3}{2}} = -\frac{1}{2\sqrt{x^3}}
(7) y=3x3=3x3y = -\frac{3}{x^3} = -3x^{-3}
dydx=3(3)x31=9x4=9x4\frac{dy}{dx} = -3 \cdot (-3) x^{-3-1} = 9 x^{-4} = \frac{9}{x^4}
(8) y=x2x=x2x12=x52y = x^2 \sqrt{x} = x^2 \cdot x^{\frac{1}{2}} = x^{\frac{5}{2}}
dydx=52x521=52x32=52xx\frac{dy}{dx} = \frac{5}{2} x^{\frac{5}{2}-1} = \frac{5}{2} x^{\frac{3}{2}} = \frac{5}{2} x\sqrt{x}
(9) y=xx3=x12x13=x1213=x16y = \frac{\sqrt{x}}{\sqrt[3]{x}} = \frac{x^{\frac{1}{2}}}{x^{\frac{1}{3}}} = x^{\frac{1}{2}-\frac{1}{3}} = x^{\frac{1}{6}}
dydx=16x161=16x56=16x56\frac{dy}{dx} = \frac{1}{6} x^{\frac{1}{6}-1} = \frac{1}{6} x^{-\frac{5}{6}} = \frac{1}{6\sqrt[6]{x^5}}

3. 最終的な答え

(1) dydx=25x35\frac{dy}{dx} = \frac{2}{5} x^{-\frac{3}{5}}
(2) dydx=1x2\frac{dy}{dx} = -\frac{1}{x^2}
(3) dydx=14x34\frac{dy}{dx} = \frac{1}{4} x^{-\frac{3}{4}}
(4) dydx=53x23\frac{dy}{dx} = \frac{5}{3} x^{\frac{2}{3}}
(5) dydx=12x12\frac{dy}{dx} = \frac{1}{2} x^{-\frac{1}{2}}
(6) dydx=12x32\frac{dy}{dx} = -\frac{1}{2} x^{-\frac{3}{2}}
(7) dydx=9x4\frac{dy}{dx} = \frac{9}{x^4}
(8) dydx=52x32\frac{dy}{dx} = \frac{5}{2} x^{\frac{3}{2}}
(9) dydx=16x56\frac{dy}{dx} = \frac{1}{6} x^{-\frac{5}{6}}