関数 $f(x) = \sin 4x$ を積分し、選択肢の中から正しいものを選択する問題です。(積分定数は省略されています。)

解析学積分三角関数定積分
2025/5/30

1. 問題の内容

関数 f(x)=sin4xf(x) = \sin 4x を積分し、選択肢の中から正しいものを選択する問題です。(積分定数は省略されています。)

2. 解き方の手順

sinax\sin ax の積分は 1acosax+C-\frac{1}{a} \cos ax + C で表されます。したがって、f(x)=sin4xf(x) = \sin 4x を積分すると、
sin4xdx=14cos4x+C\int \sin 4x dx = -\frac{1}{4} \cos 4x + C
となります。積分定数 CC は省略されているので、答えは 14cos4x-\frac{1}{4} \cos 4x です。

3. 最終的な答え

14cos4x-\frac{1}{4} \cos 4x

「解析学」の関連問題

実数 $x$ は $-\pi < x < \pi$ の範囲を動くとき、関数 $f(x) = \frac{1 + \sin x}{3 + \cos x}$ について、以下の問題を解く。 (1) $t =...

三角関数最大値最小値微分tan
2025/5/31

定積分 $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin t}{1 - \cos^2 t} dt$ の値を求めよ。

定積分三角関数積分
2025/5/31

定積分 $\int_{1}^{2} \frac{1}{(x+1)^2} dx$ の値を求め、指定された形式 $\frac{C}{D}$ で答える問題です。

定積分積分計算積分
2025/5/31

定積分 $\int_{1}^{2} \frac{1}{(x+1)^2} dx$ の値を計算し、$\frac{A}{B}$ と $\frac{C}{D}$ に当てはまる値を求める問題です。

定積分積分置換積分計算
2025/5/31

定積分 $\int_{0}^{3} (x-2)(2x+1) dx$ を計算し、空欄A, B, C, D, Eに当てはまる数字を求める問題です。

定積分積分計算
2025/5/31

不定積分 $\int \frac{x-2}{x+1} dx$ を求め、与えられた形式に合うように空欄を埋める問題です。

不定積分積分積分計算
2025/5/31

次の極限を求めます。 $\lim_{x \to \infty} \frac{2 \cdot 5^x - 2^x}{3 \cdot 5^x + 3^x}$

極限指数関数極限計算
2025/5/31

不定積分 $\int \sqrt[3]{2x+5} dx$ を計算し、解答欄A, B, Cに当てはまる数字を答える問題です。

不定積分置換積分積分
2025/5/31

次の極限を求めます。 $\lim_{n \to \infty} (\sqrt{(n+1)(n+3)} - \sqrt{n(n+2)})$

極限数列有理化挟み撃ちの原理和の公式e
2025/5/31

不定積分 $\int (-8x + 2) dx$ を計算し、与えられた形式 $-8 \cdot \frac{A}{B} x^2 + 2x + C = -Dx^2 + 2x + C$ に当てはまるように...

不定積分積分計算数式処理
2025/5/31