$\sum_{k=1}^{n} (3k^2 - 7k + 4)$ を求める問題です。代数学数列シグマ等差数列等比数列2025/5/301. 問題の内容∑k=1n(3k2−7k+4)\sum_{k=1}^{n} (3k^2 - 7k + 4)∑k=1n(3k2−7k+4) を求める問題です。2. 解き方の手順まず、シグマの性質を利用して、式を分解します。∑k=1n(3k2−7k+4)=3∑k=1nk2−7∑k=1nk+∑k=1n4\sum_{k=1}^{n} (3k^2 - 7k + 4) = 3\sum_{k=1}^{n} k^2 - 7\sum_{k=1}^{n} k + \sum_{k=1}^{n} 4∑k=1n(3k2−7k+4)=3∑k=1nk2−7∑k=1nk+∑k=1n4次に、∑k=1nk2\sum_{k=1}^{n} k^2∑k=1nk2, ∑k=1nk\sum_{k=1}^{n} k∑k=1nk, ∑k=1n4\sum_{k=1}^{n} 4∑k=1n4 をそれぞれ求めます。∑k=1nk2=16n(n+1)(2n+1)\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)∑k=1nk2=61n(n+1)(2n+1)∑k=1nk=12n(n+1)\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)∑k=1nk=21n(n+1)∑k=1n4=4n\sum_{k=1}^{n} 4 = 4n∑k=1n4=4nこれらの結果を元の式に代入します。3∑k=1nk2−7∑k=1nk+∑k=1n4=3⋅16n(n+1)(2n+1)−7⋅12n(n+1)+4n3\sum_{k=1}^{n} k^2 - 7\sum_{k=1}^{n} k + \sum_{k=1}^{n} 4 = 3 \cdot \frac{1}{6}n(n+1)(2n+1) - 7 \cdot \frac{1}{2}n(n+1) + 4n3∑k=1nk2−7∑k=1nk+∑k=1n4=3⋅61n(n+1)(2n+1)−7⋅21n(n+1)+4n=12n(n+1)(2n+1)−72n(n+1)+4n= \frac{1}{2}n(n+1)(2n+1) - \frac{7}{2}n(n+1) + 4n=21n(n+1)(2n+1)−27n(n+1)+4n=12n[(n+1)(2n+1)−7(n+1)+8]= \frac{1}{2}n[(n+1)(2n+1) - 7(n+1) + 8]=21n[(n+1)(2n+1)−7(n+1)+8]=12n[2n2+3n+1−7n−7+8]= \frac{1}{2}n[2n^2 + 3n + 1 - 7n - 7 + 8]=21n[2n2+3n+1−7n−7+8]=12n[2n2−4n+2]= \frac{1}{2}n[2n^2 - 4n + 2]=21n[2n2−4n+2]=n(n2−2n+1)= n(n^2 - 2n + 1)=n(n2−2n+1)=n(n−1)2= n(n-1)^2=n(n−1)23. 最終的な答えn(n−1)2n(n-1)^2n(n−1)2