線分DJを1:2に内分する点を、選択肢AからLの中から選ぶ問題です。

幾何学線分内分
2025/5/30

1. 問題の内容

線分DJを1:2に内分する点を、選択肢AからLの中から選ぶ問題です。

2. 解き方の手順

線分DJの長さを確認します。DからJまでは7つの区間があります。線分DJを1:2に内分するということは、Dから内分点までの距離が、内分点からJまでの距離の半分になる点を求めれば良いです。
線分DJの長さを3等分することを考えます。
7/3=2.333...7 / 3 = 2.333... となります。
Dから2.333...区間進んだ点が内分点となります。
Dから2つ進むとFです。Fから少し進んだ点が内分点となります。
選択肢の中で、もっとも近いのはGです。
DからGまでは3区間、GからJまでは4区間なので、ほぼ1:2に近いと考えられます。

3. 最終的な答え

G

「幾何学」の関連問題

問題は、円の方程式 $(x-3)^2 + (y-5)^2 = (x-2)^2 + (4-(-2))$ を解くことです。

方程式展開座標
2025/6/2

(1) 直線 $l: 2x-y-4=0$ に関して点 $A(1, 3)$ と対称な点 $B$ の座標を求めよ。また、$C(3, 5)$ とし、$P$ を直線 $l$ 上の点とするとき、$AP + PC...

座標平面直線対称点距離最大値三角関数三角関数の合成
2025/6/2

(4) 図の平行四辺形の面積を求めよ。底辺の長さは $a$ cm、高さは $b$ cm。 (5) 図の円柱の体積を求めよ。底面の半径は 3 cm、高さは $h$ cm。ただし、円周率を $\pi$ で...

面積体積平行四辺形円柱
2025/6/2

ベクトル $\vec{a} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$ と $\vec{b} = \begin{pmatrix} 2 \\ -1 \\ -...

ベクトル外積ベクトルの大きさ
2025/6/2

四面体OABCにおいて、辺ABを2:1に内分する点をD、線分CDを4:1に内分する点をE、線分OEの中点をFとする。直線CFが平面OABと交わる点をGとするとき、点Gの位置ベクトルを$\vec{OA}...

ベクトル空間ベクトル四面体内分点平面
2025/6/2

座標平面上の円 $C: x^2 + y^2 = 5$ と直線 $l: y = 2(x-1) + k$ について、以下の問いに答えます。 (1) $a=1$ のとき、$C$ と $l$ の位置関係を答え...

直線位置関係距離不等式
2025/6/2

ベクトル $\vec{a} = (4, -3)$ と $\vec{b} = (2, 1)$ が与えられている。まず、$\vec{a} \cdot \vec{b}$を計算する。次に、$\vec{p} =...

ベクトル内積垂直ベクトルの大きさ
2025/6/2

問題は2つあります。 (1) 底辺が$\frac{1}{3}a$ cm、面積が$2ab$ cm$^2$ の平行四辺形の高さを求めます。 (2) 底面の半径が$a$ cm、高さが$b$ cmの円柱Aと、...

平行四辺形円柱面積体積
2025/6/2

座標平面上の原点Oと点P(a, b), Q(x, y)に対して、ベクトルp = ベクトルOP, ベクトルq = ベクトルOQとおく。 (1) |ベクトルp| = 1である1点Pを固定するとき、ベクトル...

ベクトル内積図示領域不等式
2025/6/2

方程式 $x^2 + y^2 - 2x + 6y + n - 1 = 0$ が半径 3 の円を表すとき、定数 $n$ の値を求める。

方程式平方完成標準形
2025/6/2