$\int \frac{\cos^2 x}{2 - \sin^2 x} dx$ を計算してください。解析学積分三角関数置換積分定積分2025/5/301. 問題の内容∫cos2x2−sin2xdx\int \frac{\cos^2 x}{2 - \sin^2 x} dx∫2−sin2xcos2xdx を計算してください。2. 解き方の手順まず、cos2x=1−sin2x\cos^2 x = 1 - \sin^2 xcos2x=1−sin2x を用いて被積分関数を変形します。cos2x2−sin2x=1−sin2x2−sin2x\frac{\cos^2 x}{2 - \sin^2 x} = \frac{1 - \sin^2 x}{2 - \sin^2 x}2−sin2xcos2x=2−sin2x1−sin2x次に、分子を分母で割ることを考えます。1−sin2x2−sin2x=2−sin2x−12−sin2x=1−12−sin2x\frac{1 - \sin^2 x}{2 - \sin^2 x} = \frac{2 - \sin^2 x - 1}{2 - \sin^2 x} = 1 - \frac{1}{2 - \sin^2 x}2−sin2x1−sin2x=2−sin2x2−sin2x−1=1−2−sin2x1したがって、積分は次のようになります。∫cos2x2−sin2xdx=∫(1−12−sin2x)dx=∫1dx−∫12−sin2xdx\int \frac{\cos^2 x}{2 - \sin^2 x} dx = \int (1 - \frac{1}{2 - \sin^2 x}) dx = \int 1 dx - \int \frac{1}{2 - \sin^2 x} dx∫2−sin2xcos2xdx=∫(1−2−sin2x1)dx=∫1dx−∫2−sin2x1dxここで、∫1dx=x+C1\int 1 dx = x + C_1∫1dx=x+C1 です。次に、∫12−sin2xdx\int \frac{1}{2 - \sin^2 x} dx∫2−sin2x1dx を計算します。分子と分母をcos2x\cos^2 xcos2xで割ります。∫12−sin2xdx=∫1cos2x2cos2x−sin2xcos2xdx=∫sec2x2sec2x−tan2xdx\int \frac{1}{2 - \sin^2 x} dx = \int \frac{\frac{1}{\cos^2 x}}{\frac{2}{\cos^2 x} - \frac{\sin^2 x}{\cos^2 x}} dx = \int \frac{\sec^2 x}{2\sec^2 x - \tan^2 x} dx∫2−sin2x1dx=∫cos2x2−cos2xsin2xcos2x1dx=∫2sec2x−tan2xsec2xdxsec2x=1+tan2x\sec^2 x = 1 + \tan^2 xsec2x=1+tan2x を代入すると、∫sec2x2(1+tan2x)−tan2xdx=∫sec2x2+tan2xdx\int \frac{\sec^2 x}{2(1 + \tan^2 x) - \tan^2 x} dx = \int \frac{\sec^2 x}{2 + \tan^2 x} dx∫2(1+tan2x)−tan2xsec2xdx=∫2+tan2xsec2xdxここで、u=tanxu = \tan xu=tanx とおくと、du=sec2xdxdu = \sec^2 x dxdu=sec2xdx となるので、∫sec2x2+tan2xdx=∫12+u2du=∫1(2)2+u2du\int \frac{\sec^2 x}{2 + \tan^2 x} dx = \int \frac{1}{2 + u^2} du = \int \frac{1}{(\sqrt{2})^2 + u^2} du∫2+tan2xsec2xdx=∫2+u21du=∫(2)2+u21duこれは 1aarctan(ua)+C\frac{1}{a} \arctan(\frac{u}{a}) + Ca1arctan(au)+C の形なので、∫1(2)2+u2du=12arctan(u2)+C2=12arctan(tanx2)+C2\int \frac{1}{(\sqrt{2})^2 + u^2} du = \frac{1}{\sqrt{2}} \arctan(\frac{u}{\sqrt{2}}) + C_2 = \frac{1}{\sqrt{2}} \arctan(\frac{\tan x}{\sqrt{2}}) + C_2∫(2)2+u21du=21arctan(2u)+C2=21arctan(2tanx)+C2したがって、∫cos2x2−sin2xdx=x−12arctan(tanx2)+C\int \frac{\cos^2 x}{2 - \sin^2 x} dx = x - \frac{1}{\sqrt{2}} \arctan(\frac{\tan x}{\sqrt{2}}) + C∫2−sin2xcos2xdx=x−21arctan(2tanx)+C3. 最終的な答えx−12arctan(tanx2)+Cx - \frac{1}{\sqrt{2}} \arctan(\frac{\tan x}{\sqrt{2}}) + Cx−21arctan(2tanx)+C