与えられた積分を計算します。積分は以下の通りです。 $\int \frac{1}{x\sqrt{x^2-x+1}} dx$解析学積分変数変換積分計算逆双曲線関数2025/5/311. 問題の内容与えられた積分を計算します。積分は以下の通りです。∫1xx2−x+1dx\int \frac{1}{x\sqrt{x^2-x+1}} dx∫xx2−x+11dx2. 解き方の手順まず、変数変換を行います。x=1tx = \frac{1}{t}x=t1 とおくと、dx=−1t2dtdx = -\frac{1}{t^2}dtdx=−t21dtとなります。積分は次のようになります。∫11t1t2−1t+1(−1t2)dt=∫11t1−t+t2t2(−1t2)dt=∫11t1−t+t2∣t∣(−1t2)dt\int \frac{1}{\frac{1}{t} \sqrt{\frac{1}{t^2} - \frac{1}{t} + 1}} (-\frac{1}{t^2})dt = \int \frac{1}{\frac{1}{t} \sqrt{\frac{1-t+t^2}{t^2}}} (-\frac{1}{t^2})dt = \int \frac{1}{\frac{1}{t} \frac{\sqrt{1-t+t^2}}{|t|}} (-\frac{1}{t^2})dt∫t1t21−t1+11(−t21)dt=∫t1t21−t+t21(−t21)dt=∫t1∣t∣1−t+t21(−t21)dtt>0t>0t>0とすると、=∫11t1−t+t2t(−1t2)dt=∫t21−t+t2(−1t2)dt=−∫1t2−t+1dt= \int \frac{1}{\frac{1}{t} \frac{\sqrt{1-t+t^2}}{t}} (-\frac{1}{t^2})dt = \int \frac{t^2}{\sqrt{1-t+t^2}} (-\frac{1}{t^2})dt = -\int \frac{1}{\sqrt{t^2-t+1}}dt =∫t1t1−t+t21(−t21)dt=∫1−t+t2t2(−t21)dt=−∫t2−t+11dtさらに、平方完成を行います。t2−t+1=(t−12)2+34t^2 - t + 1 = (t - \frac{1}{2})^2 + \frac{3}{4}t2−t+1=(t−21)2+43 です。−∫1(t−12)2+34dt-\int \frac{1}{\sqrt{(t - \frac{1}{2})^2 + \frac{3}{4}}}dt −∫(t−21)2+431dtここで、u=t−12u = t - \frac{1}{2}u=t−21とおくと、du=dtdu=dtdu=dtとなり、−∫1u2+(32)2du=−sinh−1(u32)+C=−sinh−1(2u3)+C=−sinh−1(2(t−12)3)+C=−sinh−1(2t−13)+C-\int \frac{1}{\sqrt{u^2 + (\frac{\sqrt{3}}{2})^2}}du = -\sinh^{-1}(\frac{u}{\frac{\sqrt{3}}{2}}) + C = -\sinh^{-1}(\frac{2u}{\sqrt{3}}) + C = -\sinh^{-1}(\frac{2(t - \frac{1}{2})}{\sqrt{3}}) + C = -\sinh^{-1}(\frac{2t - 1}{\sqrt{3}}) + C−∫u2+(23)21du=−sinh−1(23u)+C=−sinh−1(32u)+C=−sinh−1(32(t−21))+C=−sinh−1(32t−1)+Ct=1xt = \frac{1}{x}t=x1 を代入すると、=−sinh−1(2x−13)+C=−sinh−1(2−xx3)+C=-\sinh^{-1}(\frac{\frac{2}{x} - 1}{\sqrt{3}}) + C = -\sinh^{-1}(\frac{2 - x}{x\sqrt{3}}) + C=−sinh−1(3x2−1)+C=−sinh−1(x32−x)+Csinh−1(x)=ln(x+x2+1)\sinh^{-1}(x) = \ln(x + \sqrt{x^2+1})sinh−1(x)=ln(x+x2+1)を用いると、=−ln(2−xx3+(2−x)23x2+1)+C=−ln(2−xx3+4−4x+x2+3x23x2)+C=−ln(2−xx3+4x2−4x+4x3)+C=−ln(2−x+2x2−x+1x3)+C = - \ln(\frac{2-x}{x\sqrt{3}} + \sqrt{\frac{(2-x)^2}{3x^2} + 1}) + C = - \ln(\frac{2-x}{x\sqrt{3}} + \sqrt{\frac{4-4x+x^2+3x^2}{3x^2}}) + C = - \ln(\frac{2-x}{x\sqrt{3}} + \frac{\sqrt{4x^2-4x+4}}{x\sqrt{3}}) + C = - \ln(\frac{2-x+2\sqrt{x^2-x+1}}{x\sqrt{3}}) + C=−ln(x32−x+3x2(2−x)2+1)+C=−ln(x32−x+3x24−4x+x2+3x2)+C=−ln(x32−x+x34x2−4x+4)+C=−ln(x32−x+2x2−x+1)+C3. 最終的な答え−sinh−1(2−x3x)+C\displaystyle -\sinh^{-1}\left( \frac{2-x}{\sqrt{3}x} \right) + C−sinh−1(3x2−x)+Cまたは−ln(2−x+2x2−x+1x3)+C\displaystyle -\ln\left( \frac{2-x+2\sqrt{x^2-x+1}}{x\sqrt{3}} \right) + C−ln(x32−x+2x2−x+1)+C