与えられた積分 $\int \frac{1}{x\sqrt{2+x-x^2}}dx$ を計算します。解析学積分置換積分三角関数有理関数平方完成2025/5/301. 問題の内容与えられた積分 ∫1x2+x−x2dx\int \frac{1}{x\sqrt{2+x-x^2}}dx∫x2+x−x21dx を計算します。2. 解き方の手順まず、根号の中身を平方完成します。2+x−x2=2−(x2−x)=2−(x2−x+14−14)=2−(x−12)2+14=94−(x−12)22+x-x^2 = 2 - (x^2 - x) = 2 - (x^2 - x + \frac{1}{4} - \frac{1}{4}) = 2 - (x - \frac{1}{2})^2 + \frac{1}{4} = \frac{9}{4} - (x - \frac{1}{2})^22+x−x2=2−(x2−x)=2−(x2−x+41−41)=2−(x−21)2+41=49−(x−21)2したがって、積分は∫1x94−(x−12)2dx\int \frac{1}{x\sqrt{\frac{9}{4} - (x - \frac{1}{2})^2}}dx∫x49−(x−21)21dxここで、x=32sinθ+12x = \frac{3}{2}\sin \theta + \frac{1}{2}x=23sinθ+21 と置換します。すると、dx=32cosθdθdx = \frac{3}{2} \cos \theta d\thetadx=23cosθdθ となり、94−(x−12)2=94−(32sinθ)2=94(1−sin2θ)=94cos2θ\frac{9}{4} - (x - \frac{1}{2})^2 = \frac{9}{4} - (\frac{3}{2}\sin \theta)^2 = \frac{9}{4}(1 - \sin^2 \theta) = \frac{9}{4} \cos^2 \theta49−(x−21)2=49−(23sinθ)2=49(1−sin2θ)=49cos2θとなるので、積分は∫32cosθ(32sinθ+12)94cos2θdθ=∫32cosθ(32sinθ+12)(32cosθ)dθ=∫132sinθ+12dθ\int \frac{\frac{3}{2}\cos \theta}{(\frac{3}{2}\sin \theta + \frac{1}{2})\sqrt{\frac{9}{4}\cos^2 \theta}} d\theta = \int \frac{\frac{3}{2}\cos \theta}{(\frac{3}{2}\sin \theta + \frac{1}{2})(\frac{3}{2}\cos \theta)} d\theta = \int \frac{1}{\frac{3}{2}\sin \theta + \frac{1}{2}} d\theta∫(23sinθ+21)49cos2θ23cosθdθ=∫(23sinθ+21)(23cosθ)23cosθdθ=∫23sinθ+211dθ=∫23sinθ+1dθ= \int \frac{2}{3\sin \theta + 1} d\theta=∫3sinθ+12dθここで、t=tan(θ2)t = \tan(\frac{\theta}{2})t=tan(2θ) とおくと、sinθ=2t1+t2\sin \theta = \frac{2t}{1+t^2}sinθ=1+t22t, dθ=21+t2dtd\theta = \frac{2}{1+t^2}dtdθ=1+t22dt なので、積分は∫23(2t1+t2)+121+t2dt=∫46t+1+t2dt=4∫1t2+6t+1dt\int \frac{2}{3(\frac{2t}{1+t^2}) + 1} \frac{2}{1+t^2} dt = \int \frac{4}{6t + 1 + t^2} dt = 4\int \frac{1}{t^2 + 6t + 1} dt∫3(1+t22t)+121+t22dt=∫6t+1+t24dt=4∫t2+6t+11dt=4∫1(t+3)2−8dt=4∫1(t+3)2−(22)2dt= 4\int \frac{1}{(t+3)^2 - 8} dt = 4\int \frac{1}{(t+3)^2 - (2\sqrt{2})^2} dt=4∫(t+3)2−81dt=4∫(t+3)2−(22)21dt∫1x2−a2dx=12aln∣x−ax+a∣+C\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln|\frac{x-a}{x+a}| + C∫x2−a21dx=2a1ln∣x+ax−a∣+C を用いると、4∫1(t+3)2−(22)2dt=4(142ln∣t+3−22t+3+22∣)+C=12ln∣t+3−22t+3+22∣+C4\int \frac{1}{(t+3)^2 - (2\sqrt{2})^2} dt = 4(\frac{1}{4\sqrt{2}} \ln|\frac{t+3-2\sqrt{2}}{t+3+2\sqrt{2}}|) + C = \frac{1}{\sqrt{2}} \ln|\frac{t+3-2\sqrt{2}}{t+3+2\sqrt{2}}| + C4∫(t+3)2−(22)21dt=4(421ln∣t+3+22t+3−22∣)+C=21ln∣t+3+22t+3−22∣+C=12ln∣tan(θ2)+3−22tan(θ2)+3+22∣+C= \frac{1}{\sqrt{2}} \ln|\frac{\tan(\frac{\theta}{2})+3-2\sqrt{2}}{\tan(\frac{\theta}{2})+3+2\sqrt{2}}| + C=21ln∣tan(2θ)+3+22tan(2θ)+3−22∣+Csinθ=2x−13\sin \theta = \frac{2x-1}{3}sinθ=32x−1 より、θ=arcsin(2x−13)\theta = \arcsin(\frac{2x-1}{3})θ=arcsin(32x−1) である。よって=12ln∣tan(12arcsin(2x−13))+3−22tan(12arcsin(2x−13))+3+22∣+C= \frac{1}{\sqrt{2}} \ln|\frac{\tan(\frac{1}{2}\arcsin(\frac{2x-1}{3}))+3-2\sqrt{2}}{\tan(\frac{1}{2}\arcsin(\frac{2x-1}{3}))+3+2\sqrt{2}}| + C=21ln∣tan(21arcsin(32x−1))+3+22tan(21arcsin(32x−1))+3−22∣+C3. 最終的な答え12ln∣tan(12arcsin(2x−13))+3−22tan(12arcsin(2x−13))+3+22∣+C\frac{1}{\sqrt{2}} \ln|\frac{\tan(\frac{1}{2}\arcsin(\frac{2x-1}{3}))+3-2\sqrt{2}}{\tan(\frac{1}{2}\arcsin(\frac{2x-1}{3}))+3+2\sqrt{2}}| + C21ln∣tan(21arcsin(32x−1))+3+22tan(21arcsin(32x−1))+3−22∣+C