パン3個とドーナツ4個の合計金額が880円であり、パン1個の値段がドーナツ2個の値段より60円高いとき、ドーナツ1個の値段を求める問題です。

代数学一次方程式文章問題連立方程式
2025/5/31

1. 問題の内容

パン3個とドーナツ4個の合計金額が880円であり、パン1個の値段がドーナツ2個の値段より60円高いとき、ドーナツ1個の値段を求める問題です。

2. 解き方の手順

ドーナツ1個の値段を xx 円とします。
パン1個の値段は、ドーナツ2個の値段より60円高いので、 2x+602x + 60 円となります。
パン3個とドーナツ4個の合計金額が880円なので、以下の式が成り立ちます。
3(2x+60)+4x=8803(2x + 60) + 4x = 880
この式を解きます。
6x+180+4x=8806x + 180 + 4x = 880
10x+180=88010x + 180 = 880
10x=88018010x = 880 - 180
10x=70010x = 700
x=70010x = \frac{700}{10}
x=70x = 70
したがって、ドーナツ1個の値段は70円です。

3. 最終的な答え

70円

「代数学」の関連問題

2つの2次不等式 $2x^2 - x - 6 < 0$ (1) と $x^2 - (a+2)x + 2a > 0$ (2) が与えられています。 (1) 不等式(1)の解を求めます。 (2) 不等式(...

二次不等式不等式の解解の範囲
2025/6/2

次の数量を式で表す問題です。 (1) 1個 $x$ 円のお菓子を $y$ 個買って、2000円出したときのおつり (単位: 円) (2) 7でわると商が $a$ で余りが $b$ となる数 (3) 1...

数量の表現文章問題
2025/6/2

$x=4$, $y=-6$ のとき、次の式の値を求めます。 (1) $7x+9$ (2) $2x^2$ (3) $x^2+4x-5$ (4) $4x-2y$ (5) $(8x+5y)^2$

式の値代入多項式
2025/6/2

$(\sqrt{6} - \sqrt{5})(\sqrt{6} + \sqrt{20})$ を計算しなさい。

根号式の計算展開
2025/6/2

与えられた10個の数式を簡略化または計算する問題です。

式の計算文字式分数
2025/6/2

与えられた数式 $(x+9)^2 - (x-3)(x-7)$ を計算し、整理せよ。

式展開多項式計算
2025/6/2

画像に写っている数式を解く問題です。具体的には、以下の3つの問題があります。 (4) $\frac{1}{3}x - \frac{1}{2}y = 1$のとき、$y$を求める。 (5) $l = 2(...

方程式式の変形解法
2025/6/2

3つの数式について、それぞれ指定された文字について解く問題です。具体的には、以下の3つの問題を解きます。 (4) $5(a - 2b) = 8$ を $a$ について解く。 (5) $2abc = 6...

方程式式の変形文字について解く
2025/6/2

与えられた式 $\frac{2a-4b}{5} - \frac{3a-7b}{10}$ を計算し、最も簡単な形で表してください。

分数式の計算代数
2025/6/2

与えられた式 $\frac{-3x+5y}{8} - \frac{x+y}{4}$ を計算し、簡略化します。

分数式の計算同類項簡略化
2025/6/2