関数 $y = 3x^3 - 2x^2 + 5x - 3$ の $x = 3$ における微分係数を求める問題です。

解析学微分微分係数関数の微分
2025/3/26

1. 問題の内容

関数 y=3x32x2+5x3y = 3x^3 - 2x^2 + 5x - 3x=3x = 3 における微分係数を求める問題です。

2. 解き方の手順

まず、与えられた関数を微分します。
y=3x32x2+5x3y = 3x^3 - 2x^2 + 5x - 3xx で微分すると、
dydx=9x24x+5\frac{dy}{dx} = 9x^2 - 4x + 5
次に、微分した関数に x=3x = 3 を代入して、微分係数を求めます。
dydxx=3=9(3)24(3)+5=9(9)12+5=8112+5=69+5=74\frac{dy}{dx}|_{x=3} = 9(3)^2 - 4(3) + 5 = 9(9) - 12 + 5 = 81 - 12 + 5 = 69 + 5 = 74

3. 最終的な答え

74

「解析学」の関連問題

与えられた3つの関数について、その連続性を調べます。 (1) $f(x) = \frac{x+1}{x^2-1}$ (ただし$f(0)=0$) (2) $-1 \le x \le 2$ で $f(x)...

関数の連続性極限ガウス記号対数関数
2025/4/9

無限級数 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ の値を求めます。

無限級数部分分数分解極限数列
2025/4/9

与えられた極限を計算する問題です。問題は以下の通りです。 $\lim_{n \to \infty} (1 - \frac{1}{n+1})^n$

極限数列指数関数対数関数e
2025/4/9

数列 $\{1+(-1)^n\}$ が与えられたとき、極限 $\lim_{n \to \infty} \frac{1+(-1)^n}{n}$ を、はさみうちの原理を用いて求める。

数列極限はさみうちの原理
2025/4/9

次の条件を満たす関数 $f(x)$ を求めよ。 $f(x) = x - \frac{1}{2} \int_0^1 f(x) dx$

積分関数
2025/4/9

与えられた関数について、$\frac{dy}{dx}$を求める問題です。 (1) $x = 2y^2 + 3\sqrt{y}$ (2) $\tan x + \frac{\log y}{3\sqrt{y...

微分陰関数導関数連鎖律
2025/4/9

与えられた3つの関数を微分し、それぞれの式の空欄に当てはまる数字を答える問題です。 (1) $y = e^{\frac{1}{2}x} \sin^2 x$ (2) $y = \frac{1}{3}x(...

微分合成関数の微分積の微分
2025/4/9

与えられた2つの関数を微分し、空欄を埋める問題です。 (1) $y = \frac{x}{\sqrt{2x^2+x+3}}$ の微分 (2) $y = \frac{1}{2} \tan^2 \sqrt...

微分合成関数の微分商の微分
2025/4/9

画像に書かれている内容は、関数の連続性に関する条件と、片側極限に関する質問です。 具体的には、 (1) 関数 $f(x)$ が $x=a$ で定義されていること。つまり、$f(a)$ が存在すること。...

関数の連続性極限片側極限両側極限
2025/4/9

関数 $g(x) = |x|(e^x - 1)$ について、$x=0$ における微分可能性を調べる問題です。2つの方法が提示されており、それぞれの方法で$x=0$における微分可能性が示されています。最...

微分可能性絶対値関数極限導関数
2025/4/9