与えられた7つの式を展開する問題です。代数学展開多項式2025/6/1はい、承知いたしました。問題の解答を作成します。1. 問題の内容与えられた7つの式を展開する問題です。2. 解き方の手順(1) x(x+1)(x+2)(x+3)x(x+1)(x+2)(x+3)x(x+1)(x+2)(x+3)x(x+3)(x+1)(x+2)=(x2+3x)(x2+3x+2)x(x+3)(x+1)(x+2) = (x^2+3x)(x^2+3x+2)x(x+3)(x+1)(x+2)=(x2+3x)(x2+3x+2)y=x2+3xy = x^2 + 3xy=x2+3xとおくと、y(y+2)=y2+2y=(x2+3x)2+2(x2+3x)=x4+6x3+9x2+2x2+6xy(y+2) = y^2 + 2y = (x^2+3x)^2 + 2(x^2+3x) = x^4 + 6x^3 + 9x^2 + 2x^2 + 6xy(y+2)=y2+2y=(x2+3x)2+2(x2+3x)=x4+6x3+9x2+2x2+6x=x4+6x3+11x2+6x= x^4 + 6x^3 + 11x^2 + 6x=x4+6x3+11x2+6x(2) (x−1)(x−2)(x−3)(x−4)(x-1)(x-2)(x-3)(x-4)(x−1)(x−2)(x−3)(x−4)(x−1)(x−4)(x−2)(x−3)=(x2−5x+4)(x2−5x+6)(x-1)(x-4)(x-2)(x-3) = (x^2-5x+4)(x^2-5x+6)(x−1)(x−4)(x−2)(x−3)=(x2−5x+4)(x2−5x+6)y=x2−5xy = x^2-5xy=x2−5xとおくと、(y+4)(y+6)=y2+10y+24=(x2−5x)2+10(x2−5x)+24=x4−10x3+25x2+10x2−50x+24(y+4)(y+6) = y^2 + 10y + 24 = (x^2-5x)^2 + 10(x^2-5x) + 24 = x^4 - 10x^3 + 25x^2 + 10x^2 - 50x + 24(y+4)(y+6)=y2+10y+24=(x2−5x)2+10(x2−5x)+24=x4−10x3+25x2+10x2−50x+24=x4−10x3+35x2−50x+24= x^4 - 10x^3 + 35x^2 - 50x + 24=x4−10x3+35x2−50x+24(3) (x−1)(x+1)(x2+1)(x4+1)(x-1)(x+1)(x^2+1)(x^4+1)(x−1)(x+1)(x2+1)(x4+1)(x−1)(x+1)=x2−1(x-1)(x+1) = x^2 - 1(x−1)(x+1)=x2−1(x2−1)(x2+1)=x4−1(x^2-1)(x^2+1) = x^4 - 1(x2−1)(x2+1)=x4−1(x4−1)(x4+1)=x8−1(x^4-1)(x^4+1) = x^8 - 1(x4−1)(x4+1)=x8−1(4) (x−1)2(x+1)2(x2+1)2(x-1)^2(x+1)^2(x^2+1)^2(x−1)2(x+1)2(x2+1)2((x−1)(x+1))2(x2+1)2=(x2−1)2(x2+1)2=((x2−1)(x2+1))2=(x4−1)2=x8−2x4+1((x-1)(x+1))^2(x^2+1)^2 = (x^2-1)^2(x^2+1)^2 = ((x^2-1)(x^2+1))^2 = (x^4-1)^2 = x^8 - 2x^4 + 1((x−1)(x+1))2(x2+1)2=(x2−1)2(x2+1)2=((x2−1)(x2+1))2=(x4−1)2=x8−2x4+1(5) (a+b)(a−b)(a2+ab+b2)(a2−ab+b2)(a+b)(a-b)(a^2+ab+b^2)(a^2-ab+b^2)(a+b)(a−b)(a2+ab+b2)(a2−ab+b2)(a2−b2)((a2+b2)+ab)((a2+b2)−ab)=(a2−b2)((a2+b2)2−(ab)2)=(a2−b2)(a4+2a2b2+b4−a2b2)(a^2-b^2)((a^2+b^2)+ab)((a^2+b^2)-ab) = (a^2-b^2)((a^2+b^2)^2-(ab)^2) = (a^2-b^2)(a^4+2a^2b^2+b^4-a^2b^2)(a2−b2)((a2+b2)+ab)((a2+b2)−ab)=(a2−b2)((a2+b2)2−(ab)2)=(a2−b2)(a4+2a2b2+b4−a2b2)=(a2−b2)(a4+a2b2+b4)=a6+a4b2+a2b4−a4b2−a2b4−b6=a6−b6= (a^2-b^2)(a^4+a^2b^2+b^4) = a^6 + a^4b^2 + a^2b^4 - a^4b^2 - a^2b^4 - b^6 = a^6 - b^6=(a2−b2)(a4+a2b2+b4)=a6+a4b2+a2b4−a4b2−a2b4−b6=a6−b6(6) (a+b+c)2−(a−b+c)2(a+b+c)^2 - (a-b+c)^2(a+b+c)2−(a−b+c)2(a+b+c+a−b+c)(a+b+c−(a−b+c))=(2a+2c)(2b)=4b(a+c)=4ab+4bc(a+b+c+a-b+c)(a+b+c-(a-b+c)) = (2a+2c)(2b) = 4b(a+c) = 4ab+4bc(a+b+c+a−b+c)(a+b+c−(a−b+c))=(2a+2c)(2b)=4b(a+c)=4ab+4bc(7) (x−y−1)3(x-y-1)^3(x−y−1)3(x−y−1)(x−y−1)(x−y−1)(x-y-1)(x-y-1)(x-y-1)(x−y−1)(x−y−1)(x−y−1)(x−y−1)2=(x−y−1)(x−y−1)=x2−xy−x−xy+y2+y−x+y+1=x2+y2+1−2xy−2x+2y(x-y-1)^2 = (x-y-1)(x-y-1) = x^2 - xy - x - xy + y^2 + y - x + y + 1 = x^2 + y^2 + 1 -2xy - 2x + 2y(x−y−1)2=(x−y−1)(x−y−1)=x2−xy−x−xy+y2+y−x+y+1=x2+y2+1−2xy−2x+2y(x2+y2+1−2xy−2x+2y)(x−y−1)=x3+xy2+x−2x2y−2x2+2xy−x2y−y3−y+2xy2+2xy−2y2−x2−y2−1+2xy+2x−2y=x3−3x2y−3x2+3xy2+6xy+3x−y3−3y2−3y−1(x^2 + y^2 + 1 -2xy - 2x + 2y)(x-y-1) = x^3 + xy^2 + x - 2x^2y - 2x^2 + 2xy - x^2y - y^3 - y + 2xy^2 + 2xy - 2y^2 - x^2 - y^2 - 1 + 2xy + 2x - 2y = x^3 - 3x^2y - 3x^2 + 3xy^2 + 6xy + 3x -y^3 - 3y^2 - 3y - 1(x2+y2+1−2xy−2x+2y)(x−y−1)=x3+xy2+x−2x2y−2x2+2xy−x2y−y3−y+2xy2+2xy−2y2−x2−y2−1+2xy+2x−2y=x3−3x2y−3x2+3xy2+6xy+3x−y3−3y2−3y−1=x3−3x2y−3x2+3xy2+6xy+3x−y3−3y2−3y−1= x^3 - 3x^2y - 3x^2 + 3xy^2 + 6xy + 3x - y^3 - 3y^2 - 3y - 1=x3−3x2y−3x2+3xy2+6xy+3x−y3−3y2−3y−13. 最終的な答え(1) x4+6x3+11x2+6xx^4 + 6x^3 + 11x^2 + 6xx4+6x3+11x2+6x(2) x4−10x3+35x2−50x+24x^4 - 10x^3 + 35x^2 - 50x + 24x4−10x3+35x2−50x+24(3) x8−1x^8 - 1x8−1(4) x8−2x4+1x^8 - 2x^4 + 1x8−2x4+1(5) a6−b6a^6 - b^6a6−b6(6) 4ab+4bc4ab+4bc4ab+4bc(7) x3−3x2y−3x2+3xy2+6xy+3x−y3−3y2−3y−1x^3 - 3x^2y - 3x^2 + 3xy^2 + 6xy + 3x - y^3 - 3y^2 - 3y - 1x3−3x2y−3x2+3xy2+6xy+3x−y3−3y2−3y−1