与えられた不定積分 $\int 5x^4 \, dx$ を計算する問題です。

解析学不定積分積分べき乗の積分
2025/3/26

1. 問題の内容

与えられた不定積分 5x4dx\int 5x^4 \, dx を計算する問題です。

2. 解き方の手順

不定積分を計算するために、べき乗の積分公式を利用します。
一般に、xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C (ただし n1n \neq -1, Cは積分定数) です。
この公式を使って、与えられた積分を計算します。
5x4dx=5x4dx\int 5x^4 \, dx = 5 \int x^4 \, dx
=5x4+14+1+C= 5 \cdot \frac{x^{4+1}}{4+1} + C
=5x55+C= 5 \cdot \frac{x^5}{5} + C
=x5+C= x^5 + C

3. 最終的な答え

x5+Cx^5 + C

「解析学」の関連問題

$e^\pi > 21$ を示す。ただし、$e \approx 2.72$ および $\pi \approx 3.14$ を用いることができる。

指数関数近似対数関数
2025/7/4

関数 $f(x) = \frac{x^2 - 2x + 3}{1+x^2}$ の不定積分 $\int f(x) \, dx$ を求める問題です。

不定積分関数の積分有理関数arctan
2025/7/4

関数 $f(x) = \frac{1}{x^2 - 2x + 3}$ の不定積分 $\int f(x) dx$ を求める問題です。

積分不定積分置換積分三角関数
2025/7/4

問題3において、$f(x) = x^2 \sin(\frac{1}{x}) (x \neq 0), f(0) = 0, g(x) = x$が与えられています。 (1) $\lim_{x \to 0} ...

極限微分三角関数不定形
2025/7/4

関数 $f(x) = x\sqrt[3]{x+1} = x(x+1)^{1/3}$ ($x \ge -1$) の極値を求め、グラフの概形を描き、最大値・最小値を求める問題です。

極値関数のグラフ導関数微分最大値最小値
2025/7/4

関数 $f(x) = \pi - |x|$ ($-\pi \leq x \leq \pi$) をフーリエ級数展開せよ。ただし、$f(x)$ は周期 $2\pi$ の周期関数である。

フーリエ級数周期関数積分三角関数
2025/7/4

与えられた5つの関数の極限を求める問題です。 (1) $\lim_{x \to 2} \frac{2\sqrt{x}-1-x}{x^2 - 4x + 4}$ (2) $\lim_{x \to \inf...

極限ロピタルの定理テイラー展開
2025/7/4

与えられた極限の計算問題を解きます。 (11) $\lim_{x\to 0} \frac{x^3+2x^2}{2x^4-3x^2}$ (12) $\lim_{x\to \infty} \frac{2x...

極限関数の極限三角関数対数関数
2025/7/4

2つの不定積分を求める問題です。 問題1: $\int \frac{1}{4 + x^2} dx$ を求め、$A \tan^{-1}(\frac{x}{B}) + C$ の形で答える。 問題2: $\...

積分不定積分置換積分tan関数指数関数
2025/7/4

$\int \cos 2x dx = \frac{1}{2} \sin 2x + C$

積分不定積分三角関数指数関数対数関数置換積分
2025/7/4