与えられた積分 $\int (-6x^2) dx$ を計算する問題です。

解析学積分不定積分積分計算
2025/3/26

1. 問題の内容

与えられた積分 (6x2)dx\int (-6x^2) dx を計算する問題です。

2. 解き方の手順

積分 6x2dx\int -6x^2 dx を計算します。
まず、定数 6-6 を積分の外に出します。
6x2dx=6x2dx\int -6x^2 dx = -6 \int x^2 dx
次に、x2x^2 の積分を計算します。積分公式 xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C を用いると、
x2dx=x2+12+1+C=x33+C\int x^2 dx = \frac{x^{2+1}}{2+1} + C = \frac{x^3}{3} + C
したがって、
6x2dx=6(x33+C)=2x3+C-6 \int x^2 dx = -6 (\frac{x^3}{3} + C) = -2x^3 + C'
ここで、CC' は新たな積分定数です。

3. 最終的な答え

2x3+C-2x^3 + C

「解析学」の関連問題

問題は2つあります。 問題1:関数 $f(x) = x - x^3$ と区間 $[0, 2]$ について、平均値の定理を適用したとき、定理が主張する $c$ の値を求める。$f'(c) = 1$ かつ...

平均値の定理極限ロピタルの定理微分
2025/6/3

関数 $y = x^4 - 6x^2 + 1$ の $-1 \le x \le 2$ における最大値を求める。ただし、$x^2 = t$ とおく。まず、$t$ の取りうる範囲を求め、それを用いて $y...

関数の最大値二次関数変数変換最大値
2025/6/3

問題は、演算子 grad(勾配)によって形成されるベクトルが、なぜその場所で最大の傾斜方向を示すのかを説明することです。

勾配偏微分全微分最大傾斜方向ベクトル解析
2025/6/3

$y$-$z$平面上のベクトル場 $\vec{v} = v_y \vec{j} + v_z \vec{k}$ の回転が、以下の式で与えられる理由を、2次元ベクトル場における水の流れとそれによる歯車の回...

ベクトル場回転偏微分勾配ストークスの定理
2025/6/3

(a) $\int_{0}^{2} \int_{1}^{4} xy \, dy \, dx$ の累次積分を計算する。 (b) $\int_{1}^{4} \int_{0}^{2} (y - xy^2 ...

多重積分累次積分
2025/6/3

与えられた5つの関数 $z$ について、それぞれ $x$ と $y$ に関する偏導関数 $\frac{\partial z}{\partial x}$ と $\frac{\partial z}{\pa...

偏微分多変数関数合成関数の微分
2025/6/3

定積分 $\int_{-1}^{1} \sqrt{1-x^2} \, dx$ を計算する問題です。

定積分積分置換積分三角関数面積
2025/6/3

与えられた6つの極限を計算する問題です。 (1) $\lim_{x \to \infty} \frac{1}{x+2}$ (2) $\lim_{x \to -\infty} \frac{1}{x^3+...

極限関数の極限無限大発散
2025/6/3

関数 $f(x) = x|x-2|$ について、以下の問いに答える問題です。 (ア) $y = f(x)$ のグラフの概形を選ぶ。 (イ) 曲線 $y = -x^2 + 2x$ の原点における接線の傾...

関数のグラフ微分接線絶対値関数
2025/6/3

与えられた6つの極限値を求める問題です。 (1) $\lim_{x \to 0} \frac{1-\cos x}{x^2}$ (2) $\lim_{x \to 0} \frac{x - \sin x}...

極限ロピタルの定理三角関数対数関数arctan
2025/6/3