与えられた和の式 $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$ を計算せよ。解析学級数部分分数分解telescoping sum2025/6/11. 問題の内容与えられた和の式 ∑k=1n1k(k+1)(k+2)\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}∑k=1nk(k+1)(k+2)1 を計算せよ。2. 解き方の手順部分分数分解を利用します。1k(k+1)(k+2)\frac{1}{k(k+1)(k+2)}k(k+1)(k+2)1 を次のように分解します。1k(k+1)(k+2)=Ak+Bk+1+Ck+2\frac{1}{k(k+1)(k+2)} = \frac{A}{k} + \frac{B}{k+1} + \frac{C}{k+2}k(k+1)(k+2)1=kA+k+1B+k+2C両辺に k(k+1)(k+2)k(k+1)(k+2)k(k+1)(k+2) を掛けると、1=A(k+1)(k+2)+Bk(k+2)+Ck(k+1)1 = A(k+1)(k+2) + Bk(k+2) + Ck(k+1)1=A(k+1)(k+2)+Bk(k+2)+Ck(k+1)k=0k=0k=0 のとき、1=A(1)(2)1 = A(1)(2)1=A(1)(2) より、A=12A = \frac{1}{2}A=21k=−1k=-1k=−1 のとき、1=B(−1)(1)1 = B(-1)(1)1=B(−1)(1) より、B=−1B = -1B=−1k=−2k=-2k=−2 のとき、1=C(−2)(−1)1 = C(-2)(-1)1=C(−2)(−1) より、C=12C = \frac{1}{2}C=21よって、1k(k+1)(k+2)=12k−1k+1+12(k+2)\frac{1}{k(k+1)(k+2)} = \frac{1}{2k} - \frac{1}{k+1} + \frac{1}{2(k+2)}k(k+1)(k+2)1=2k1−k+11+2(k+2)11k(k+1)(k+2)=12(1k−2k+1+1k+2)\frac{1}{k(k+1)(k+2)} = \frac{1}{2} \left( \frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2} \right)k(k+1)(k+2)1=21(k1−k+12+k+21)1k(k+1)(k+2)=12(1k−1k+1−1k+1+1k+2)\frac{1}{k(k+1)(k+2)} = \frac{1}{2} \left( \frac{1}{k} - \frac{1}{k+1} - \frac{1}{k+1} + \frac{1}{k+2} \right)k(k+1)(k+2)1=21(k1−k+11−k+11+k+21)∑k=1n1k(k+1)(k+2)=12∑k=1n(1k−1k+1−1k+1+1k+2)\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{2} \sum_{k=1}^{n} \left( \frac{1}{k} - \frac{1}{k+1} - \frac{1}{k+1} + \frac{1}{k+2} \right)∑k=1nk(k+1)(k+2)1=21∑k=1n(k1−k+11−k+11+k+21)∑k=1n1k(k+1)(k+2)=12∑k=1n(1k−1k+1)−12∑k=1n(1k+1−1k+2)\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{2} \sum_{k=1}^{n} \left( \frac{1}{k} - \frac{1}{k+1} \right) - \frac{1}{2} \sum_{k=1}^{n} \left( \frac{1}{k+1} - \frac{1}{k+2} \right)∑k=1nk(k+1)(k+2)1=21∑k=1n(k1−k+11)−21∑k=1n(k+11−k+21)ここで、∑k=1n(1k−1k+1)\sum_{k=1}^{n} \left( \frac{1}{k} - \frac{1}{k+1} \right)∑k=1n(k1−k+11) と ∑k=1n(1k+1−1k+2)\sum_{k=1}^{n} \left( \frac{1}{k+1} - \frac{1}{k+2} \right)∑k=1n(k+11−k+21) はそれぞれ telescoping sum となる。∑k=1n(1k−1k+1)=(1−12)+(12−13)+...+(1n−1n+1)=1−1n+1\sum_{k=1}^{n} \left( \frac{1}{k} - \frac{1}{k+1} \right) = \left( 1 - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + ... + \left( \frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{1}{n+1}∑k=1n(k1−k+11)=(1−21)+(21−31)+...+(n1−n+11)=1−n+11∑k=1n(1k+1−1k+2)=(12−13)+(13−14)+...+(1n+1−1n+2)=12−1n+2\sum_{k=1}^{n} \left( \frac{1}{k+1} - \frac{1}{k+2} \right) = \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + ... + \left( \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{2} - \frac{1}{n+2}∑k=1n(k+11−k+21)=(21−31)+(31−41)+...+(n+11−n+21)=21−n+21したがって、∑k=1n1k(k+1)(k+2)=12(1−1n+1)−12(12−1n+2)\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{2} \left( 1 - \frac{1}{n+1} \right) - \frac{1}{2} \left( \frac{1}{2} - \frac{1}{n+2} \right)∑k=1nk(k+1)(k+2)1=21(1−n+11)−21(21−n+21)=12−12(n+1)−14+12(n+2)= \frac{1}{2} - \frac{1}{2(n+1)} - \frac{1}{4} + \frac{1}{2(n+2)}=21−2(n+1)1−41+2(n+2)1=14−12(n+1)+12(n+2)= \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}=41−2(n+1)1+2(n+2)1=14−(n+2)−(n+1)2(n+1)(n+2)= \frac{1}{4} - \frac{(n+2) - (n+1)}{2(n+1)(n+2)}=41−2(n+1)(n+2)(n+2)−(n+1)=14−12(n+1)(n+2)= \frac{1}{4} - \frac{1}{2(n+1)(n+2)}=41−2(n+1)(n+2)1=(n+1)(n+2)−24(n+1)(n+2)= \frac{(n+1)(n+2) - 2}{4(n+1)(n+2)}=4(n+1)(n+2)(n+1)(n+2)−2=n2+3n+2−24(n+1)(n+2)= \frac{n^2 + 3n + 2 - 2}{4(n+1)(n+2)}=4(n+1)(n+2)n2+3n+2−2=n2+3n4(n+1)(n+2)= \frac{n^2 + 3n}{4(n+1)(n+2)}=4(n+1)(n+2)n2+3n=n(n+3)4(n+1)(n+2)= \frac{n(n+3)}{4(n+1)(n+2)}=4(n+1)(n+2)n(n+3)3. 最終的な答えn(n+3)4(n+1)(n+2)\frac{n(n+3)}{4(n+1)(n+2)}4(n+1)(n+2)n(n+3)