与えられた関数 $y = \tan^{-1} \sqrt{\frac{x-1}{2-x}}$ を微分せよ。解析学微分合成関数逆三角関数2025/6/11. 問題の内容与えられた関数 y=tan−1x−12−xy = \tan^{-1} \sqrt{\frac{x-1}{2-x}}y=tan−12−xx−1 を微分せよ。2. 解き方の手順まず、合成関数の微分法を用いる。u=x−12−xu = \sqrt{\frac{x-1}{2-x}}u=2−xx−1 とおくと、y=tan−1uy = \tan^{-1} uy=tan−1u となる。dydx=dydu⋅dudx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}dxdy=dudy⋅dxdu である。dydu=ddu(tan−1u)=11+u2\frac{dy}{du} = \frac{d}{du} (\tan^{-1} u) = \frac{1}{1+u^2}dudy=dud(tan−1u)=1+u21次に、dudx\frac{du}{dx}dxdu を求める。u=x−12−x=(x−12−x)1/2u = \sqrt{\frac{x-1}{2-x}} = (\frac{x-1}{2-x})^{1/2}u=2−xx−1=(2−xx−1)1/2dudx=12(x−12−x)−1/2⋅ddx(x−12−x)\frac{du}{dx} = \frac{1}{2} (\frac{x-1}{2-x})^{-1/2} \cdot \frac{d}{dx} (\frac{x-1}{2-x})dxdu=21(2−xx−1)−1/2⋅dxd(2−xx−1)ddx(x−12−x)=(1)(2−x)−(x−1)(−1)(2−x)2=2−x+x−1(2−x)2=1(2−x)2\frac{d}{dx} (\frac{x-1}{2-x}) = \frac{(1)(2-x) - (x-1)(-1)}{(2-x)^2} = \frac{2-x + x -1}{(2-x)^2} = \frac{1}{(2-x)^2}dxd(2−xx−1)=(2−x)2(1)(2−x)−(x−1)(−1)=(2−x)22−x+x−1=(2−x)21したがって、dudx=12(x−12−x)−1/2⋅1(2−x)2=122−xx−1⋅1(2−x)2=12(x−1)(2−x)3\frac{du}{dx} = \frac{1}{2} (\frac{x-1}{2-x})^{-1/2} \cdot \frac{1}{(2-x)^2} = \frac{1}{2} \sqrt{\frac{2-x}{x-1}} \cdot \frac{1}{(2-x)^2} = \frac{1}{2 \sqrt{(x-1)(2-x)^3}}dxdu=21(2−xx−1)−1/2⋅(2−x)21=21x−12−x⋅(2−x)21=2(x−1)(2−x)31dydx=11+u2⋅dudx=11+x−12−x⋅12(x−1)(2−x)3\frac{dy}{dx} = \frac{1}{1+u^2} \cdot \frac{du}{dx} = \frac{1}{1 + \frac{x-1}{2-x}} \cdot \frac{1}{2\sqrt{(x-1)(2-x)^3}} dxdy=1+u21⋅dxdu=1+2−xx−11⋅2(x−1)(2−x)31=12−x+x−12−x⋅12(x−1)(2−x)3=2−x1⋅12(x−1)(2−x)3=2−x2(x−1)(2−x)3= \frac{1}{\frac{2-x+x-1}{2-x}} \cdot \frac{1}{2\sqrt{(x-1)(2-x)^3}} = \frac{2-x}{1} \cdot \frac{1}{2\sqrt{(x-1)(2-x)^3}} = \frac{2-x}{2\sqrt{(x-1)(2-x)^3}}=2−x2−x+x−11⋅2(x−1)(2−x)31=12−x⋅2(x−1)(2−x)31=2(x−1)(2−x)32−x=2−x2(x−1)(2−x)2(2−x)=2−x2(2−x)(x−1)(2−x)=12(x−1)(2−x)= \frac{2-x}{2\sqrt{(x-1)(2-x)^2(2-x)}} = \frac{2-x}{2(2-x)\sqrt{(x-1)(2-x)}} = \frac{1}{2\sqrt{(x-1)(2-x)}}=2(x−1)(2−x)2(2−x)2−x=2(2−x)(x−1)(2−x)2−x=2(x−1)(2−x)1dydx=12−x2+3x−2\frac{dy}{dx} = \frac{1}{2\sqrt{-x^2+3x-2}}dxdy=2−x2+3x−21ただし、簡単な方法として、以下のような解き方がある。1+u2=1+x−12−x=2−x+x−12−x=12−x1+u^2 = 1+\frac{x-1}{2-x} = \frac{2-x+x-1}{2-x} = \frac{1}{2-x}1+u2=1+2−xx−1=2−x2−x+x−1=2−x1よって、11+u2=2−x\frac{1}{1+u^2} = 2-x1+u21=2−xdudx=12(x−12−x)−1/21(2−x)2=12x−12−x⋅1(2−x)2=122−xx−1⋅1(2−x)2\frac{du}{dx} = \frac{1}{2} (\frac{x-1}{2-x})^{-1/2} \frac{1}{(2-x)^2} = \frac{1}{2\sqrt{\frac{x-1}{2-x}}} \cdot \frac{1}{(2-x)^2} = \frac{1}{2} \sqrt{\frac{2-x}{x-1}} \cdot \frac{1}{(2-x)^2}dxdu=21(2−xx−1)−1/2(2−x)21=22−xx−11⋅(2−x)21=21x−12−x⋅(2−x)21dydx=11+u2⋅dudx=(2−x)⋅122−xx−11(2−x)2=122−xx−112−x\frac{dy}{dx} = \frac{1}{1+u^2} \cdot \frac{du}{dx} = (2-x) \cdot \frac{1}{2} \sqrt{\frac{2-x}{x-1}} \frac{1}{(2-x)^2} = \frac{1}{2} \sqrt{\frac{2-x}{x-1}} \frac{1}{2-x}dxdy=1+u21⋅dxdu=(2−x)⋅21x−12−x(2−x)21=21x−12−x2−x1=122−xx−112−x=121x−12−x=12(x−1)(2−x)= \frac{1}{2} \frac{\sqrt{2-x}}{\sqrt{x-1}} \frac{1}{2-x} = \frac{1}{2} \frac{1}{\sqrt{x-1}\sqrt{2-x}} = \frac{1}{2\sqrt{(x-1)(2-x)}}=21x−12−x2−x1=21x−12−x1=2(x−1)(2−x)1=12−x2+3x−2= \frac{1}{2 \sqrt{-x^2 + 3x -2}}=2−x2+3x−21別の解法:tan−1(x−12−x)\tan^{-1}(\sqrt{\frac{x-1}{2-x}})tan−1(2−xx−1)において、x=1+sin2θx = 1 + \sin^2 \thetax=1+sin2θとおくとx−12−x=sin2θ2−1−sin2θ=sin2θ1−sin2θ=sin2θcos2θ=tan2θ\frac{x-1}{2-x} = \frac{\sin^2 \theta}{2 - 1 - \sin^2 \theta} = \frac{\sin^2 \theta}{1 - \sin^2 \theta} = \frac{\sin^2 \theta}{\cos^2 \theta} = \tan^2 \theta2−xx−1=2−1−sin2θsin2θ=1−sin2θsin2θ=cos2θsin2θ=tan2θtan−1(x−12−x)=tan−1(tanθ)=θ\tan^{-1} (\sqrt{\frac{x-1}{2-x}}) = \tan^{-1} (\tan \theta) = \thetatan−1(2−xx−1)=tan−1(tanθ)=θsin2θ=x−1\sin^2 \theta = x-1sin2θ=x−1sinθ=x−1\sin \theta = \sqrt{x-1}sinθ=x−1θ=sin−1x−1\theta = \sin^{-1} \sqrt{x-1}θ=sin−1x−1dθdx=11−(x−1)⋅12x−1=12(2−x)(x−1)=12−x2+3x−2\frac{d \theta}{dx} = \frac{1}{\sqrt{1 - (x-1)}} \cdot \frac{1}{2\sqrt{x-1}} = \frac{1}{2 \sqrt{(2-x)(x-1)}} = \frac{1}{2 \sqrt{-x^2 + 3x -2}}dxdθ=1−(x−1)1⋅2x−11=2(2−x)(x−1)1=2−x2+3x−213. 最終的な答えdydx=12−x2+3x−2\frac{dy}{dx} = \frac{1}{2 \sqrt{-x^2 + 3x -2}}dxdy=2−x2+3x−21