与えられた2次方程式 $3x^2 + 5x + 1 = 0$ の解を求める問題です。

代数学二次方程式解の公式平方根
2025/3/26

1. 問題の内容

与えられた2次方程式 3x2+5x+1=03x^2 + 5x + 1 = 0 の解を求める問題です。

2. 解き方の手順

この2次方程式を解くために、解の公式を使用します。
2次方程式 ax2+bx+c=0ax^2 + bx + c = 0 の解の公式は、
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
です。
この問題では、a=3a = 3, b=5b = 5, c=1c = 1 です。
これらの値を解の公式に代入します。
x=5±5243123x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}
x=5±25126x = \frac{-5 \pm \sqrt{25 - 12}}{6}
x=5±136x = \frac{-5 \pm \sqrt{13}}{6}
したがって、解は x=5+136x = \frac{-5 + \sqrt{13}}{6}x=5136x = \frac{-5 - \sqrt{13}}{6} です。

3. 最終的な答え

x=5+136,5136x = \frac{-5 + \sqrt{13}}{6}, \frac{-5 - \sqrt{13}}{6}

「代数学」の関連問題

不等式 $-\frac{1}{2} < \frac{1}{4}n + \frac{2}{3} < 1$ を満たす整数 $n$ をすべて求める。

不等式一次不等式整数解
2025/6/28

初項2、公差3の等差数列を、第n群にn個の数が入るように群に分ける。 (1) 第n群の最初の数をnの式で表せ。 (2) 第n群に入るすべての数の和を求めよ。

数列等差数列群数列数列の和
2025/6/28

初項2、公差3の等差数列を、第n群にn個の数が入るように群に分ける。 (1) 第n群の最初の数をnの式で表す。 (2) 第n群に入るすべての数の和を求める。

数列等差数列群数列級数
2025/6/28

初項2、公差3の等差数列を、第 $n$ 群に $n$ 個の数が入るように群に分ける。 (1) 第 $n$ 群の最初の数を $n$ の式で表す。 (2) 第 $n$ 群に入るすべての数の和を求める。

数列等差数列群数列和の公式
2025/6/28

$x = \frac{\sqrt{5} + \sqrt{11}}{2}$ 、 $y = \frac{\sqrt{5} - \sqrt{11}}{2}$ のとき、以下の値を求めます。 (1) $x + ...

式の計算平方根代入多項式
2025/6/28

$x = \frac{\sqrt{5}+\sqrt{11}}{2}$、 $y = \frac{\sqrt{5}-\sqrt{11}}{2}$ のとき、以下の式の値を求めよ。 (1) $x+y$ (2)...

式の計算平方根代数
2025/6/28

問題は $xy$ の値を求めるもので、 $xy = \frac{\sqrt{5}+\sqrt{11}}{2} \times \frac{\sqrt{5}-\sqrt{11}}{2}$ です。

式の計算平方根有理化式の展開
2025/6/28

与えられた2次式 $6x^2 - 5x - 6$ を因数分解してください。

因数分解二次式2次方程式
2025/6/28

与えられた問題は、総和 $\sum_{k=1}^{n} (3k + 2)$ を計算することです。

総和シグマ数列公式
2025/6/28

## 1. 問題の内容

絶対値方程式場合分け
2025/6/28