問題は $xy$ の値を求めるもので、 $xy = \frac{\sqrt{5}+\sqrt{11}}{2} \times \frac{\sqrt{5}-\sqrt{11}}{2}$ です。

代数学式の計算平方根有理化式の展開
2025/6/28

1. 問題の内容

問題は xyxy の値を求めるもので、
xy=5+112×5112xy = \frac{\sqrt{5}+\sqrt{11}}{2} \times \frac{\sqrt{5}-\sqrt{11}}{2}
です。

2. 解き方の手順

まず、分子同士、分母同士を掛け合わせます。
xy=(5+11)(511)2×2xy = \frac{(\sqrt{5}+\sqrt{11})(\sqrt{5}-\sqrt{11})}{2 \times 2}
分子は和と差の積の形なので、 (5)2(11)2(\sqrt{5})^2 - (\sqrt{11})^2 となります。
xy=5114xy = \frac{5 - 11}{4}
xy=64xy = \frac{-6}{4}
xy=32xy = -\frac{3}{2}

3. 最終的な答え

xy=32xy = -\frac{3}{2}

「代数学」の関連問題

初項2、公差3の等差数列を、第n群にn個の数が入るように群に分ける。 (1) 第n群の最初の数をnの式で表せ。 (2) 第n群に入るすべての数の和を求めよ。

数列等差数列群数列数列の和
2025/6/28

初項2、公差3の等差数列を、第n群にn個の数が入るように群に分ける。 (1) 第n群の最初の数をnの式で表す。 (2) 第n群に入るすべての数の和を求める。

数列等差数列群数列級数
2025/6/28

初項2、公差3の等差数列を、第 $n$ 群に $n$ 個の数が入るように群に分ける。 (1) 第 $n$ 群の最初の数を $n$ の式で表す。 (2) 第 $n$ 群に入るすべての数の和を求める。

数列等差数列群数列和の公式
2025/6/28

$x = \frac{\sqrt{5} + \sqrt{11}}{2}$ 、 $y = \frac{\sqrt{5} - \sqrt{11}}{2}$ のとき、以下の値を求めます。 (1) $x + ...

式の計算平方根代入多項式
2025/6/28

$x = \frac{\sqrt{5}+\sqrt{11}}{2}$、 $y = \frac{\sqrt{5}-\sqrt{11}}{2}$ のとき、以下の式の値を求めよ。 (1) $x+y$ (2)...

式の計算平方根代数
2025/6/28

与えられた2次式 $6x^2 - 5x - 6$ を因数分解してください。

因数分解二次式2次方程式
2025/6/28

与えられた問題は、総和 $\sum_{k=1}^{n} (3k + 2)$ を計算することです。

総和シグマ数列公式
2025/6/28

## 1. 問題の内容

絶対値方程式場合分け
2025/6/28

与えられた二次式 $2x^2 + 13x + 6$ を因数分解します。

因数分解二次式ac法
2025/6/28

与えられた二次式 $6x^2 - 5x - 6$ を因数分解します。

因数分解二次式二次方程式
2025/6/28