関数 $y = (1+x)\sin x + (1-x)\cos x$ の導関数 $y'$ を求め、それが $y' = \sqrt{2}x \sin(x + \frac{\pi}{4})$ となることを示す問題です。解析学微分導関数三角関数積の微分法加法定理2025/6/11. 問題の内容関数 y=(1+x)sinx+(1−x)cosxy = (1+x)\sin x + (1-x)\cos xy=(1+x)sinx+(1−x)cosx の導関数 y′y'y′ を求め、それが y′=2xsin(x+π4)y' = \sqrt{2}x \sin(x + \frac{\pi}{4})y′=2xsin(x+4π) となることを示す問題です。2. 解き方の手順まず、yyy を微分します。積の微分法 (uv)′=u′v+uv′(uv)' = u'v + uv'(uv)′=u′v+uv′ を用います。y=(1+x)sinx+(1−x)cosxy = (1+x)\sin x + (1-x)\cos xy=(1+x)sinx+(1−x)cosxy′=(1+x)′sinx+(1+x)(sinx)′+(1−x)′cosx+(1−x)(cosx)′y' = (1+x)'\sin x + (1+x)(\sin x)' + (1-x)'\cos x + (1-x)(\cos x)'y′=(1+x)′sinx+(1+x)(sinx)′+(1−x)′cosx+(1−x)(cosx)′y′=(1)sinx+(1+x)(cosx)+(−1)cosx+(1−x)(−sinx)y' = (1)\sin x + (1+x)(\cos x) + (-1)\cos x + (1-x)(-\sin x)y′=(1)sinx+(1+x)(cosx)+(−1)cosx+(1−x)(−sinx)y′=sinx+cosx+xcosx−cosx−sinx+xsinxy' = \sin x + \cos x + x\cos x - \cos x - \sin x + x\sin xy′=sinx+cosx+xcosx−cosx−sinx+xsinxy′=xcosx+xsinxy' = x\cos x + x\sin xy′=xcosx+xsinxy′=x(cosx+sinx)y' = x(\cos x + \sin x)y′=x(cosx+sinx)次に、y′=2xsin(x+π4)y' = \sqrt{2}x \sin(x + \frac{\pi}{4})y′=2xsin(x+4π) を展開します。sin(x+π4)=sinxcosπ4+cosxsinπ4=sinx12+cosx12=12(sinx+cosx)\sin(x + \frac{\pi}{4}) = \sin x \cos \frac{\pi}{4} + \cos x \sin \frac{\pi}{4} = \sin x \frac{1}{\sqrt{2}} + \cos x \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}(\sin x + \cos x)sin(x+4π)=sinxcos4π+cosxsin4π=sinx21+cosx21=21(sinx+cosx)2xsin(x+π4)=2x⋅12(sinx+cosx)=x(sinx+cosx)\sqrt{2}x \sin(x + \frac{\pi}{4}) = \sqrt{2}x \cdot \frac{1}{\sqrt{2}}(\sin x + \cos x) = x(\sin x + \cos x)2xsin(x+4π)=2x⋅21(sinx+cosx)=x(sinx+cosx)したがって、y′=x(cosx+sinx)y' = x(\cos x + \sin x)y′=x(cosx+sinx) は y′=2xsin(x+π4)y' = \sqrt{2}x \sin(x + \frac{\pi}{4})y′=2xsin(x+4π) と等しいことが示されました。3. 最終的な答えy′=x(cosx+sinx)=2xsin(x+π4)y' = x(\cos x + \sin x) = \sqrt{2}x \sin(x + \frac{\pi}{4})y′=x(cosx+sinx)=2xsin(x+4π)