$x = \sqrt{3} + 4$、 $y = \sqrt{3} - 4$ のとき、$xy - y^2$ の値を求める問題です。

代数学式の計算展開平方根代入
2025/3/26

1. 問題の内容

x=3+4x = \sqrt{3} + 4y=34y = \sqrt{3} - 4 のとき、xyy2xy - y^2 の値を求める問題です。

2. 解き方の手順

まず、xyxy を計算します。
xy=(3+4)(34)=(3)242=316=13xy = (\sqrt{3} + 4)(\sqrt{3} - 4) = (\sqrt{3})^2 - 4^2 = 3 - 16 = -13
次に、y2y^2 を計算します。
y2=(34)2=(3)2234+42=383+16=1983y^2 = (\sqrt{3} - 4)^2 = (\sqrt{3})^2 - 2 \cdot \sqrt{3} \cdot 4 + 4^2 = 3 - 8\sqrt{3} + 16 = 19 - 8\sqrt{3}
最後に、xyy2xy - y^2 を計算します。
xyy2=13(1983)=1319+83=32+83=8332xy - y^2 = -13 - (19 - 8\sqrt{3}) = -13 - 19 + 8\sqrt{3} = -32 + 8\sqrt{3} = 8\sqrt{3} - 32

3. 最終的な答え

83328\sqrt{3} - 32

「代数学」の関連問題

問題は以下の通りです。 (1) 2つの2x2行列 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $B = \begin{bmatrix} e ...

行列行列式線形代数
2025/7/2

6次対称群 $S_6$ の元 $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 5 & 6 & 1 & 3 \end{pmatrix...

群論置換群対称群置換巡回置換互換符号
2025/7/2

次の和 $S$ を求めます。 $S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}$

数列等差数列等比数列和の計算
2025/7/2

放物線 $y = 2x^2 + 8x + 7$ を平行移動して、放物線 $y = 2x^2 - 10x + 14$ に重ねるには、どのように平行移動すればよいかを求める問題です。

二次関数放物線平行移動平方完成
2025/7/2

不等式 $2x - 3 > a + 8x$ について、次の2つの問題を解きます。 (1) 解が $x < 1$ となるように、定数 $a$ の値を求めます。 (2) 解が $x = 0$ を含むように...

不等式一次不等式解の範囲定数
2025/7/2

連立不等式 $x^2 + y^2 \le 25$ $(y - 2x - 10)(y + x + 5) \le 0$ の表す領域を $D$ とする。 (1) 領域 $D$ を図示せよ。 (2) 点 $(...

連立不等式領域最大値最小値直線
2025/7/2

問題は、数列 $S$ の和を求める問題です。 $S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}$

数列級数等比数列代数
2025/7/2

関数 $y = \frac{1}{2}x^2$ において、$x$ の変域が $-2 \le x \le 4$ のとき、$y$ の変域を求めよ。

二次関数関数の変域放物線最大値最小値
2025/7/2

$y$ は $x$ の2乗に比例し、$x=3$ のとき $y=-3$ である。$x=-9$ のときの $y$ の値を求めよ。

比例二次関数代入方程式
2025/7/2

次の2次式を平方完成せよ。 (1) $x^2 + 4x$ (2) $2x^2 - 8x$ (4) $\frac{1}{2}x^2 - x + 3$

平方完成二次式二次関数
2025/7/2