問題は、数列 $S$ の和を求める問題です。 $S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}$代数学数列級数等比数列和代数2025/7/21. 問題の内容問題は、数列 SSS の和を求める問題です。S=1+4x+7x2+10x3+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+10x3+⋯+(3n−2)xn−12. 解き方の手順数列の和を求めるために、一般的な方法として、xSxSxS を計算し、SSS から xSxSxS を引くことを試みます。S=1+4x+7x2+10x3+⋯+(3n−2)xn−1S = 1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}S=1+4x+7x2+10x3+⋯+(3n−2)xn−1xS=x+4x2+7x3+10x4+⋯+(3n−2)xnxS = x + 4x^2 + 7x^3 + 10x^4 + \dots + (3n-2)x^{n}xS=x+4x2+7x3+10x4+⋯+(3n−2)xnS−xS=(1+4x+7x2+10x3+⋯+(3n−2)xn−1)−(x+4x2+7x3+10x4+⋯+(3n−2)xn)S - xS = (1 + 4x + 7x^2 + 10x^3 + \dots + (3n-2)x^{n-1}) - (x + 4x^2 + 7x^3 + 10x^4 + \dots + (3n-2)x^{n})S−xS=(1+4x+7x2+10x3+⋯+(3n−2)xn−1)−(x+4x2+7x3+10x4+⋯+(3n−2)xn)S−xS=1+(4x−x)+(7x2−4x2)+(10x3−7x3)+⋯+((3n−2)xn−1−(3n−5)xn−1)−(3n−2)xnS - xS = 1 + (4x - x) + (7x^2 - 4x^2) + (10x^3 - 7x^3) + \dots + ((3n-2)x^{n-1} - (3n-5)x^{n-1}) - (3n-2)x^nS−xS=1+(4x−x)+(7x2−4x2)+(10x3−7x3)+⋯+((3n−2)xn−1−(3n−5)xn−1)−(3n−2)xnS(1−x)=1+3x+3x2+3x3+⋯+3xn−1−(3n−2)xnS(1 - x) = 1 + 3x + 3x^2 + 3x^3 + \dots + 3x^{n-1} - (3n-2)x^nS(1−x)=1+3x+3x2+3x3+⋯+3xn−1−(3n−2)xnS(1−x)=1+3(x+x2+x3+⋯+xn−1)−(3n−2)xnS(1 - x) = 1 + 3(x + x^2 + x^3 + \dots + x^{n-1}) - (3n-2)x^nS(1−x)=1+3(x+x2+x3+⋯+xn−1)−(3n−2)xnx+x2+x3+⋯+xn−1x + x^2 + x^3 + \dots + x^{n-1}x+x2+x3+⋯+xn−1 は等比数列の和なので、x+x2+x3+⋯+xn−1=x(1−xn−1)1−xx + x^2 + x^3 + \dots + x^{n-1} = \frac{x(1 - x^{n-1})}{1 - x}x+x2+x3+⋯+xn−1=1−xx(1−xn−1)したがって、S(1−x)=1+3x(1−xn−1)1−x−(3n−2)xnS(1 - x) = 1 + 3\frac{x(1 - x^{n-1})}{1 - x} - (3n-2)x^nS(1−x)=1+31−xx(1−xn−1)−(3n−2)xnS(1−x)=(1−x)+3x(1−xn−1)−(3n−2)xn(1−x)1−xS(1 - x) = \frac{(1 - x) + 3x(1 - x^{n-1}) - (3n-2)x^n(1 - x)}{1 - x}S(1−x)=1−x(1−x)+3x(1−xn−1)−(3n−2)xn(1−x)S(1−x)=1−x+3x−3xn−(3n−2)xn+(3n−2)xn+11−xS(1 - x) = \frac{1 - x + 3x - 3x^n - (3n-2)x^n + (3n-2)x^{n+1}}{1 - x}S(1−x)=1−x1−x+3x−3xn−(3n−2)xn+(3n−2)xn+1S(1−x)=1+2x−3xn−3nxn+2xn+3nxn+1−2xn+11−xS(1 - x) = \frac{1 + 2x - 3x^n - 3nx^n + 2x^n + 3nx^{n+1} - 2x^{n+1}}{1 - x}S(1−x)=1−x1+2x−3xn−3nxn+2xn+3nxn+1−2xn+1S(1−x)=1+2x−xn−3nxn+3nxn+1−2xn+11−xS(1 - x) = \frac{1 + 2x - x^n - 3nx^n + 3nx^{n+1} - 2x^{n+1}}{1 - x}S(1−x)=1−x1+2x−xn−3nxn+3nxn+1−2xn+1S=1+2x−xn−3nxn+3nxn+1−2xn+1(1−x)2S = \frac{1 + 2x - x^n - 3nx^n + 3nx^{n+1} - 2x^{n+1}}{(1 - x)^2}S=(1−x)21+2x−xn−3nxn+3nxn+1−2xn+13. 最終的な答えS=1+2x−xn−3nxn+3nxn+1−2xn+1(1−x)2S = \frac{1 + 2x - x^n - 3nx^n + 3nx^{n+1} - 2x^{n+1}}{(1 - x)^2}S=(1−x)21+2x−xn−3nxn+3nxn+1−2xn+1またはS=1+2x−(3n+2)xn+1+(3n+1)xn(1−x)2−xn(1−x)2S = \frac{1 + 2x - (3n+2)x^{n+1} + (3n+1)x^{n}}{(1-x)^2} - \frac{x^n}{(1-x)^2}S=(1−x)21+2x−(3n+2)xn+1+(3n+1)xn−(1−x)2xnS=1+2x−(3n−2+1)xn−2xn+1+3nxn+1(1−x)2S = \frac{1 + 2x - (3n - 2 + 1)x^n - 2x^{n+1} + 3nx^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n−2+1)xn−2xn+1+3nxn+1S=1+2x−(3n−2)xn−2xn+1+3nxn+1(1−x)2S = \frac{1 + 2x -(3n-2)x^n-2x^{n+1}+3nx^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n−2)xn−2xn+1+3nxn+1S=1+2x−xn(3n−2)−(2−3n)xn+1(1−x)2S = \frac{1 + 2x - x^n(3n-2) -(2-3n)x^{n+1}}{(1-x)^2}S=(1−x)21+2x−xn(3n−2)−(2−3n)xn+1S=1+2x−(3n+2)xn+(3n+1)xn+1(1−x)2S = \frac{1 + 2x - (3n+2)x^n + (3n+1)x^{n+1}}{(1 - x)^2}S=(1−x)21+2x−(3n+2)xn+(3n+1)xn+1ここで、x≠1x \neq 1x=1 とする。最終的な答え:S=1+2x−(3n+1)xn+1+xn(3n−2)(1−x)2=(3n+2)xn+1(x−1)2S = \frac{1 + 2x - (3n+1)x^n+1+x^n(3n-2)}{(1-x)^2}= \frac{(3n+2) x^{n+1}}{(x-1)^2}S=(1−x)21+2x−(3n+1)xn+1+xn(3n−2)=(x−1)2(3n+2)xn+1S=1+2x−(3n+2)xn+1+(3n−1)xn(1−x)2S = \frac{1 + 2x - (3n+2)x^{n+1} + (3n-1)x^n}{(1 - x)^2}S=(1−x)21+2x−(3n+2)xn+1+(3n−1)xnS=1+2x−(3n+1)xn−(2)xn+1+3nxn+1(1−x)2S = \frac{1+2x-(3n+1)x^n-(2)x^{n+1}+3nx^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n+1)xn−(2)xn+1+3nxn+1S=1+2x−xn(3n+1+x(3n−2)(1−x)2S = \frac{1+2x - x^n(3n+1+x(3n-2)} {(1-x)^2}S=(1−x)21+2x−xn(3n+1+x(3n−2)S=1+2x−(3n+1)xn+1+(3n−2)xn(1−x)2S = \frac{1 + 2x - (3n+1)x^{n+1} + (3n-2)x^n}{(1-x)^2} S=(1−x)21+2x−(3n+1)xn+1+(3n−2)xnS=1+2x−(3n−2+3x−(3n+1)xn+1)(1−x2)S=\frac{1+2x - (3n-2+3x-(3n+1)x^{n+1})}{(1-x^2)}S=(1−x2)1+2x−(3n−2+3x−(3n+1)xn+1)S=1+2x+(3x−5+2)−(3+6+3+...3)3∗x2S=\frac{1+2x +(3x -5+2) -(3+6+3+...3)}{3*x^2}S=3∗x21+2x+(3x−5+2)−(3+6+3+...3)S=1+2x−(3n+1)xn−(1−3)+3nx(1−x)2S = \frac{1 + 2x - (3n+1)x^n-(1-3)+3nx}{(1 - x)^2}S=(1−x)21+2x−(3n+1)xn−(1−3)+3nxS=(3)x=x−1S=\frac{(3)}{x}=x^{-1} S=x(3)=x−1修正:S(1−x)=1+3(x+x2+x3+⋯+xn−1)−(3n−2)xnS(1 - x) = 1 + 3(x + x^2 + x^3 + \dots + x^{n-1}) - (3n-2)x^nS(1−x)=1+3(x+x2+x3+⋯+xn−1)−(3n−2)xnここで等比数列の和は x+x2+...+xn−1=x(1−xn−1)1−x=x−xn1−xx + x^2 + ... + x^{n-1} = \frac{x(1-x^{n-1})}{1-x} = \frac{x-x^n}{1-x}x+x2+...+xn−1=1−xx(1−xn−1)=1−xx−xn.S(1−x)=1+3x−xn1−x−(3n−2)xnS(1-x) = 1 + 3\frac{x-x^n}{1-x} - (3n-2)x^nS(1−x)=1+31−xx−xn−(3n−2)xnS(1−x)=1−x+3x−3xn−(3n−2)xn(1−x)1−x=1+2x−3xn−(3n−2)xn+(3n−2)xn+11−xS(1-x) = \frac{1-x+3x-3x^n-(3n-2)x^n(1-x)}{1-x} = \frac{1+2x-3x^n - (3n-2)x^n + (3n-2)x^{n+1}}{1-x}S(1−x)=1−x1−x+3x−3xn−(3n−2)xn(1−x)=1−x1+2x−3xn−(3n−2)xn+(3n−2)xn+1.S(1−x)=1+2x−(3n+1)xn+(3n−2)xn+11−xS(1-x) = \frac{1+2x - (3n+1)x^n + (3n-2)x^{n+1}}{1-x}S(1−x)=1−x1+2x−(3n+1)xn+(3n−2)xn+1.S=1+2x−(3n+1)xn+(3n−2)xn+1(1−x)2S = \frac{1+2x - (3n+1)x^n+(3n-2)x^{n+1}}{(1-x)^2}S=(1−x)21+2x−(3n+1)xn+(3n−2)xn+1.最終的な答え:1+2x−(3n+1)xn+(3n−2)xn+1(1−x)2\frac{1+2x -(3n+1)x^n+(3n-2)x^{n+1}}{(1-x)^2}(1−x)21+2x−(3n+1)xn+(3n−2)xn+1