次の2次式を平方完成せよ。 (1) $x^2 + 4x$ (2) $2x^2 - 8x$ (4) $\frac{1}{2}x^2 - x + 3$代数学平方完成二次式二次関数2025/7/21. 問題の内容次の2次式を平方完成せよ。(1) x2+4xx^2 + 4xx2+4x(2) 2x2−8x2x^2 - 8x2x2−8x(4) 12x2−x+3\frac{1}{2}x^2 - x + 321x2−x+32. 解き方の手順(1) x2+4xx^2 + 4xx2+4xx2+4x=(x+2)2−22=(x+2)2−4x^2 + 4x = (x + 2)^2 - 2^2 = (x+2)^2 - 4x2+4x=(x+2)2−22=(x+2)2−4(2) 2x2−8x2x^2 - 8x2x2−8x2x2−8x=2(x2−4x)=2((x−2)2−22)=2((x−2)2−4)=2(x−2)2−82x^2 - 8x = 2(x^2 - 4x) = 2((x-2)^2 - 2^2) = 2((x-2)^2 - 4) = 2(x-2)^2 - 82x2−8x=2(x2−4x)=2((x−2)2−22)=2((x−2)2−4)=2(x−2)2−8(4) 12x2−x+3\frac{1}{2}x^2 - x + 321x2−x+312x2−x+3=12(x2−2x)+3=12((x−1)2−12)+3=12((x−1)2−1)+3=12(x−1)2−12+3=12(x−1)2+52\frac{1}{2}x^2 - x + 3 = \frac{1}{2}(x^2 - 2x) + 3 = \frac{1}{2}((x-1)^2 - 1^2) + 3 = \frac{1}{2}((x-1)^2 - 1) + 3 = \frac{1}{2}(x-1)^2 - \frac{1}{2} + 3 = \frac{1}{2}(x-1)^2 + \frac{5}{2}21x2−x+3=21(x2−2x)+3=21((x−1)2−12)+3=21((x−1)2−1)+3=21(x−1)2−21+3=21(x−1)2+253. 最終的な答え(1) (x+2)2−4(x+2)^2 - 4(x+2)2−4(2) 2(x−2)2−82(x-2)^2 - 82(x−2)2−8(4) 12(x−1)2+52\frac{1}{2}(x-1)^2 + \frac{5}{2}21(x−1)2+25