$x = \frac{1}{2}(t - \frac{1}{t})$ ($t > 0$) と置換することにより、不定積分 $\int \sqrt{x^2 + 1} \, dx$ を求めよ。解析学不定積分置換積分積分2025/6/21. 問題の内容x=12(t−1t)x = \frac{1}{2}(t - \frac{1}{t})x=21(t−t1) (t>0t > 0t>0) と置換することにより、不定積分 ∫x2+1 dx\int \sqrt{x^2 + 1} \, dx∫x2+1dx を求めよ。2. 解き方の手順まず、xxx を ttt で微分します。dxdt=12(1+1t2)\frac{dx}{dt} = \frac{1}{2}(1 + \frac{1}{t^2})dtdx=21(1+t21)dx=12(1+1t2)dtdx = \frac{1}{2}(1 + \frac{1}{t^2}) dtdx=21(1+t21)dt次に、x2+1x^2 + 1x2+1 を計算します。x2=(12(t−1t))2=14(t2−2+1t2)x^2 = (\frac{1}{2}(t - \frac{1}{t}))^2 = \frac{1}{4}(t^2 - 2 + \frac{1}{t^2})x2=(21(t−t1))2=41(t2−2+t21)x2+1=14(t2−2+1t2)+1=14(t2+2+1t2)=14(t+1t)2x^2 + 1 = \frac{1}{4}(t^2 - 2 + \frac{1}{t^2}) + 1 = \frac{1}{4}(t^2 + 2 + \frac{1}{t^2}) = \frac{1}{4}(t + \frac{1}{t})^2x2+1=41(t2−2+t21)+1=41(t2+2+t21)=41(t+t1)2x2+1=14(t+1t)2=12(t+1t)\sqrt{x^2 + 1} = \sqrt{\frac{1}{4}(t + \frac{1}{t})^2} = \frac{1}{2}(t + \frac{1}{t})x2+1=41(t+t1)2=21(t+t1) (since t>0t>0t>0)したがって、∫x2+1 dx=∫12(t+1t)⋅12(1+1t2) dt\int \sqrt{x^2 + 1} \, dx = \int \frac{1}{2}(t + \frac{1}{t}) \cdot \frac{1}{2}(1 + \frac{1}{t^2}) \, dt∫x2+1dx=∫21(t+t1)⋅21(1+t21)dt=14∫(t+1t)(1+1t2) dt= \frac{1}{4} \int (t + \frac{1}{t})(1 + \frac{1}{t^2}) \, dt=41∫(t+t1)(1+t21)dt=14∫(t+1t+1t+1t3) dt= \frac{1}{4} \int (t + \frac{1}{t} + \frac{1}{t} + \frac{1}{t^3}) \, dt=41∫(t+t1+t1+t31)dt=14∫(t+21t+1t3) dt= \frac{1}{4} \int (t + 2\frac{1}{t} + \frac{1}{t^3}) \, dt=41∫(t+2t1+t31)dt=14(12t2+2ln∣t∣−12t2)+C= \frac{1}{4} (\frac{1}{2}t^2 + 2\ln|t| - \frac{1}{2t^2}) + C=41(21t2+2ln∣t∣−2t21)+C=18t2+12ln∣t∣−18t2+C= \frac{1}{8}t^2 + \frac{1}{2}\ln|t| - \frac{1}{8t^2} + C=81t2+21ln∣t∣−8t21+C=18(t2−1t2)+12ln∣t∣+C= \frac{1}{8}(t^2 - \frac{1}{t^2}) + \frac{1}{2}\ln|t| + C=81(t2−t21)+21ln∣t∣+Cx=12(t−1t)x = \frac{1}{2}(t - \frac{1}{t})x=21(t−t1) より、2x=t−1t2x = t - \frac{1}{t}2x=t−t1.t2−2xt−1=0t^2 - 2xt - 1 = 0t2−2xt−1=0 なので、t=2x±4x2+42=x±x2+1t = \frac{2x \pm \sqrt{4x^2 + 4}}{2} = x \pm \sqrt{x^2 + 1}t=22x±4x2+4=x±x2+1t>0t > 0t>0 なので、t=x+x2+1t = x + \sqrt{x^2 + 1}t=x+x2+1.18(t2−1t2)=14x\frac{1}{8}(t^2 - \frac{1}{t^2}) = \frac{1}{4}x81(t2−t21)=41x なので、∫x2+1dx=12xx2+1+12ln(x+x2+1)+C\int \sqrt{x^2 + 1} dx = \frac{1}{2}x \sqrt{x^2+1} + \frac{1}{2}\ln(x + \sqrt{x^2 + 1}) + C∫x2+1dx=21xx2+1+21ln(x+x2+1)+C.3. 最終的な答え∫x2+1 dx=12xx2+1+12ln(x+x2+1)+C\int \sqrt{x^2 + 1} \, dx = \frac{1}{2}x\sqrt{x^2 + 1} + \frac{1}{2}\ln(x + \sqrt{x^2 + 1}) + C∫x2+1dx=21xx2+1+21ln(x+x2+1)+C