与えられた累次積分および2重積分を計算する問題です。解析学重積分累次積分積分計算2025/6/21. 問題の内容与えられた累次積分および2重積分を計算する問題です。2. 解き方の手順(a) ∫02∫14xy dy dx\int_0^2 \int_1^4 xy \, dy \, dx∫02∫14xydydxまず内側の積分を計算します。∫14xy dy=x∫14y dy=x[12y2]14=x(12(42−12))=x(152)=152x\int_1^4 xy \, dy = x \int_1^4 y \, dy = x \left[ \frac{1}{2} y^2 \right]_1^4 = x \left( \frac{1}{2} (4^2 - 1^2) \right) = x \left( \frac{15}{2} \right) = \frac{15}{2} x∫14xydy=x∫14ydy=x[21y2]14=x(21(42−12))=x(215)=215x次に外側の積分を計算します。∫02152x dx=152∫02x dx=152[12x2]02=152(12(22−02))=152(2)=15\int_0^2 \frac{15}{2} x \, dx = \frac{15}{2} \int_0^2 x \, dx = \frac{15}{2} \left[ \frac{1}{2} x^2 \right]_0^2 = \frac{15}{2} \left( \frac{1}{2} (2^2 - 0^2) \right) = \frac{15}{2} (2) = 15∫02215xdx=215∫02xdx=215[21x2]02=215(21(22−02))=215(2)=15(b) ∫14∫02(y−xy2+4xy) dx dy\int_1^4 \int_0^2 (y - xy^2 + 4xy) \, dx \, dy∫14∫02(y−xy2+4xy)dxdyまず内側の積分を計算します。∫02(y−xy2+4xy) dx=∫02y dx−∫02xy2 dx+∫024xy dx=y∫02dx−y2∫02x dx+4y∫02x dx=y[x]02−y2[12x2]02+4y[12x2]02=y(2−0)−y2(12(22−02))+4y(12(22−02))=2y−2y2+8y=10y−2y2\int_0^2 (y - xy^2 + 4xy) \, dx = \int_0^2 y \, dx - \int_0^2 xy^2 \, dx + \int_0^2 4xy \, dx = y \int_0^2 dx - y^2 \int_0^2 x \, dx + 4y \int_0^2 x \, dx = y [x]_0^2 - y^2 \left[ \frac{1}{2} x^2 \right]_0^2 + 4y \left[ \frac{1}{2} x^2 \right]_0^2 = y(2-0) - y^2 \left( \frac{1}{2} (2^2 - 0^2) \right) + 4y \left( \frac{1}{2} (2^2 - 0^2) \right) = 2y - 2y^2 + 8y = 10y - 2y^2∫02(y−xy2+4xy)dx=∫02ydx−∫02xy2dx+∫024xydx=y∫02dx−y2∫02xdx+4y∫02xdx=y[x]02−y2[21x2]02+4y[21x2]02=y(2−0)−y2(21(22−02))+4y(21(22−02))=2y−2y2+8y=10y−2y2次に外側の積分を計算します。∫14(10y−2y2) dy=∫1410y dy−∫142y2 dy=10∫14y dy−2∫14y2 dy=10[12y2]14−2[13y3]14=10(12(42−12))−2(13(43−13))=10(152)−2(633)=75−42=33\int_1^4 (10y - 2y^2) \, dy = \int_1^4 10y \, dy - \int_1^4 2y^2 \, dy = 10 \int_1^4 y \, dy - 2 \int_1^4 y^2 \, dy = 10 \left[ \frac{1}{2} y^2 \right]_1^4 - 2 \left[ \frac{1}{3} y^3 \right]_1^4 = 10 \left( \frac{1}{2} (4^2 - 1^2) \right) - 2 \left( \frac{1}{3} (4^3 - 1^3) \right) = 10 \left( \frac{15}{2} \right) - 2 \left( \frac{63}{3} \right) = 75 - 42 = 33∫14(10y−2y2)dy=∫1410ydy−∫142y2dy=10∫14ydy−2∫14y2dy=10[21y2]14−2[31y3]14=10(21(42−12))−2(31(43−13))=10(215)−2(363)=75−42=33(a) ∬D(x2+2xy+y2) dx dy\iint_D (x^2 + 2xy + y^2) \, dx \, dy∬D(x2+2xy+y2)dxdy, D:−1≤x≤1,2≤y≤3D: -1 \le x \le 1, 2 \le y \le 3D:−1≤x≤1,2≤y≤3∬D(x2+2xy+y2) dx dy=∫−11∫23(x2+2xy+y2) dy dx=∫−11∫23(x+y)2 dy dx\iint_D (x^2 + 2xy + y^2) \, dx \, dy = \int_{-1}^1 \int_2^3 (x^2 + 2xy + y^2) \, dy \, dx = \int_{-1}^1 \int_2^3 (x+y)^2 \, dy \, dx∬D(x2+2xy+y2)dxdy=∫−11∫23(x2+2xy+y2)dydx=∫−11∫23(x+y)2dydxまず内側の積分を計算します。∫23(x+y)2 dy=[13(x+y)3]23=13((x+3)3−(x+2)3)=13(x3+9x2+27x+27−(x3+6x2+12x+8))=13(3x2+15x+19)=x2+5x+193\int_2^3 (x+y)^2 \, dy = \left[ \frac{1}{3} (x+y)^3 \right]_2^3 = \frac{1}{3} ((x+3)^3 - (x+2)^3) = \frac{1}{3} (x^3 + 9x^2 + 27x + 27 - (x^3 + 6x^2 + 12x + 8)) = \frac{1}{3} (3x^2 + 15x + 19) = x^2 + 5x + \frac{19}{3}∫23(x+y)2dy=[31(x+y)3]23=31((x+3)3−(x+2)3)=31(x3+9x2+27x+27−(x3+6x2+12x+8))=31(3x2+15x+19)=x2+5x+319次に外側の積分を計算します。∫−11(x2+5x+193) dx=∫−11x2 dx+5∫−11x dx+193∫−11dx=[13x3]−11+5[12x2]−11+193[x]−11=13(1−(−1))+5(12(1−1))+193(1−(−1))=23+0+383=403\int_{-1}^1 \left( x^2 + 5x + \frac{19}{3} \right) \, dx = \int_{-1}^1 x^2 \, dx + 5 \int_{-1}^1 x \, dx + \frac{19}{3} \int_{-1}^1 dx = \left[ \frac{1}{3} x^3 \right]_{-1}^1 + 5 \left[ \frac{1}{2} x^2 \right]_{-1}^1 + \frac{19}{3} [x]_{-1}^1 = \frac{1}{3} (1 - (-1)) + 5 \left( \frac{1}{2} (1 - 1) \right) + \frac{19}{3} (1 - (-1)) = \frac{2}{3} + 0 + \frac{38}{3} = \frac{40}{3}∫−11(x2+5x+319)dx=∫−11x2dx+5∫−11xdx+319∫−11dx=[31x3]−11+5[21x2]−11+319[x]−11=31(1−(−1))+5(21(1−1))+319(1−(−1))=32+0+338=340(b) ∬D(x2+2xy) dx dy\iint_D (x^2 + 2xy) \, dx \, dy∬D(x2+2xy)dxdy, D:0≤x≤1,0≤y≤xD: 0 \le x \le 1, 0 \le y \le xD:0≤x≤1,0≤y≤x∬D(x2+2xy) dx dy=∫01∫0x(x2+2xy) dy dx\iint_D (x^2 + 2xy) \, dx \, dy = \int_0^1 \int_0^x (x^2 + 2xy) \, dy \, dx∬D(x2+2xy)dxdy=∫01∫0x(x2+2xy)dydxまず内側の積分を計算します。∫0x(x2+2xy) dy=[x2y+xy2]0x=x2(x)+x(x2)−(0+0)=x3+x3=2x3\int_0^x (x^2 + 2xy) \, dy = \left[ x^2 y + xy^2 \right]_0^x = x^2(x) + x(x^2) - (0 + 0) = x^3 + x^3 = 2x^3∫0x(x2+2xy)dy=[x2y+xy2]0x=x2(x)+x(x2)−(0+0)=x3+x3=2x3次に外側の積分を計算します。∫012x3 dx=2∫01x3 dx=2[14x4]01=2(14(14−04))=2(14)=12\int_0^1 2x^3 \, dx = 2 \int_0^1 x^3 \, dx = 2 \left[ \frac{1}{4} x^4 \right]_0^1 = 2 \left( \frac{1}{4} (1^4 - 0^4) \right) = 2 \left( \frac{1}{4} \right) = \frac{1}{2}∫012x3dx=2∫01x3dx=2[41x4]01=2(41(14−04))=2(41)=213. 最終的な答え(a) 15(b) 33(a) 40/3(b) 1/2