$6^{52}$ は何桁の整数か求めなさい。ただし、$\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とする。

代数学指数対数桁数
2025/3/27

1. 問題の内容

6526^{52} は何桁の整数か求めなさい。ただし、log102=0.3010\log_{10} 2 = 0.3010, log103=0.4771\log_{10} 3 = 0.4771 とする。

2. 解き方の手順

6526^{52} の桁数を求めるには、log10652\log_{10} 6^{52} の値を計算し、その整数部分に1を足せばよい。
log10652=52log106\log_{10} 6^{52} = 52 \log_{10} 6
6=2×36 = 2 \times 3 なので、
log106=log10(2×3)=log102+log103\log_{10} 6 = \log_{10} (2 \times 3) = \log_{10} 2 + \log_{10} 3
与えられた値を使うと、
log106=0.3010+0.4771=0.7781\log_{10} 6 = 0.3010 + 0.4771 = 0.7781
したがって、
log10652=52×0.7781=40.4612\log_{10} 6^{52} = 52 \times 0.7781 = 40.4612
log10652\log_{10} 6^{52} の整数部分は40なので、6526^{52} の桁数は 40+1=4140 + 1 = 41 桁である。

3. 最終的な答え

41桁

「代数学」の関連問題

次の等式を証明します。 (1) $(2a+b)^2+(a-2b)^2=5(a^2+b^2)$ (2) $a^4-b^4=(a-b)(a^3+a^2b+ab^2+b^3)$

等式の証明展開因数分解多項式
2025/5/9

$0^\circ \le \theta \le 180^\circ$ のとき、$\sin \theta + \cos \theta = \frac{1}{2}$ である。 このとき、$\sin \th...

三角関数三角関数の相互関係二次方程式
2025/5/9

与えられた等式が $x$ についての恒等式となるように、定数 $a, b, c$ (または $a, b$) の値を求める問題です。具体的には以下の6つの問題があります。 (1) $ax^2 + bx ...

恒等式係数比較連立方程式部分分数分解
2025/5/9

与えられた分数式 $\frac{x-\frac{9}{x}}{1-\frac{3}{x}}$ を簡単にします。

分数式代数式簡略化因数分解
2025/5/9

$x = \frac{\sqrt{7} - \sqrt{3}}{2}$ のとき、次の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ (3)...

式の計算無理数有理化代数
2025/5/9

与えられた数式の値を計算します。 数式は $\frac{2}{x(x+2)} + \frac{2}{(x+2)(x+4)} + \frac{2}{(x+4)(x+6)}$ です。

部分分数分解分数式
2025/5/9

$a > 0$, $b > 0$ のとき、$ab + \frac{9}{ab} \ge 6$ を証明する問題です。

不等式相加相乗平均証明
2025/5/9

次の4つの計算問題を解きます。 (1) $\frac{2}{x+1} + \frac{3}{x-1}$ (2) $\frac{4}{x^2-4} - \frac{5}{x^2-x-6}$ (3) $\...

分数式式の計算通分因数分解
2025/5/9

与えられた4つの数式をそれぞれ計算せよ。 (1) $\frac{x^2-4x}{3x+1} \times \frac{3x+1}{x^2}$ (2) $\frac{x^2+x-2}{x^2+4x+4}...

分数式因数分解式の計算約分
2025/5/9

与えられた式を簡略化します。問題の式は $\frac{x-y}{xy} + \frac{y-z}{yz} + \frac{z-x}{zx}$ です。

分数式式の簡略化代数
2025/5/9