$x = \frac{3+\sqrt{5}}{3-\sqrt{5}}$、 $y = \frac{3-\sqrt{5}}{3+\sqrt{5}}$ のとき、 (5) $x^4 + y^4$ (6) $x^5 + y^5$ をそれぞれ求めよ。

代数学式の計算有理化対称式展開
2025/6/3

1. 問題の内容

x=3+535x = \frac{3+\sqrt{5}}{3-\sqrt{5}}y=353+5y = \frac{3-\sqrt{5}}{3+\sqrt{5}} のとき、
(5) x4+y4x^4 + y^4
(6) x5+y5x^5 + y^5
をそれぞれ求めよ。

2. 解き方の手順

まず、xxyyをそれぞれ有理化します。
x=3+535=(3+5)(3+5)(35)(3+5)=9+65+595=14+654=7+352x = \frac{3+\sqrt{5}}{3-\sqrt{5}} = \frac{(3+\sqrt{5})(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})} = \frac{9+6\sqrt{5}+5}{9-5} = \frac{14+6\sqrt{5}}{4} = \frac{7+3\sqrt{5}}{2}
y=353+5=(35)(35)(3+5)(35)=965+595=14654=7352y = \frac{3-\sqrt{5}}{3+\sqrt{5}} = \frac{(3-\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} = \frac{9-6\sqrt{5}+5}{9-5} = \frac{14-6\sqrt{5}}{4} = \frac{7-3\sqrt{5}}{2}
x+y=7+352+7352=142=7x+y = \frac{7+3\sqrt{5}}{2} + \frac{7-3\sqrt{5}}{2} = \frac{14}{2} = 7
xy=7+3527352=49454=44=1xy = \frac{7+3\sqrt{5}}{2} \cdot \frac{7-3\sqrt{5}}{2} = \frac{49 - 45}{4} = \frac{4}{4} = 1
(5) x4+y4x^4 + y^4 を求める。
(x+y)2=x2+y2+2xy(x+y)^2 = x^2 + y^2 + 2xy より、x2+y2=(x+y)22xy=722(1)=492=47x^2 + y^2 = (x+y)^2 - 2xy = 7^2 - 2(1) = 49 - 2 = 47
(x2+y2)2=x4+y4+2x2y2(x^2+y^2)^2 = x^4 + y^4 + 2x^2y^2 より、x4+y4=(x2+y2)22(xy)2=(47)22(1)2=22092=2207x^4 + y^4 = (x^2+y^2)^2 - 2(xy)^2 = (47)^2 - 2(1)^2 = 2209 - 2 = 2207
(6) x5+y5x^5 + y^5 を求める。
x3+y3=(x+y)(x2xy+y2)=(x+y)(x2+y2xy)=7(471)=7(46)=322x^3 + y^3 = (x+y)(x^2-xy+y^2) = (x+y)(x^2+y^2-xy) = 7(47-1) = 7(46) = 322
x5+y5=(x2+y2)(x3+y3)x2y2(x+y)=47(322)12(7)=151347=15127x^5 + y^5 = (x^2+y^2)(x^3+y^3) - x^2y^2(x+y) = 47(322) - 1^2(7) = 15134 - 7 = 15127

3. 最終的な答え

(5) x4+y4=2207x^4 + y^4 = 2207
(6) x5+y5=15127x^5 + y^5 = 15127