$x = \frac{3+\sqrt{5}}{3-\sqrt{5}}$、 $y = \frac{3-\sqrt{5}}{3+\sqrt{5}}$ のとき、 (5) $x^4 + y^4$ (6) $x^5 + y^5$ をそれぞれ求めよ。代数学式の計算有理化対称式展開2025/6/31. 問題の内容x=3+53−5x = \frac{3+\sqrt{5}}{3-\sqrt{5}}x=3−53+5、 y=3−53+5y = \frac{3-\sqrt{5}}{3+\sqrt{5}}y=3+53−5 のとき、(5) x4+y4x^4 + y^4x4+y4(6) x5+y5x^5 + y^5x5+y5をそれぞれ求めよ。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=3+53−5=(3+5)(3+5)(3−5)(3+5)=9+65+59−5=14+654=7+352x = \frac{3+\sqrt{5}}{3-\sqrt{5}} = \frac{(3+\sqrt{5})(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})} = \frac{9+6\sqrt{5}+5}{9-5} = \frac{14+6\sqrt{5}}{4} = \frac{7+3\sqrt{5}}{2}x=3−53+5=(3−5)(3+5)(3+5)(3+5)=9−59+65+5=414+65=27+35y=3−53+5=(3−5)(3−5)(3+5)(3−5)=9−65+59−5=14−654=7−352y = \frac{3-\sqrt{5}}{3+\sqrt{5}} = \frac{(3-\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} = \frac{9-6\sqrt{5}+5}{9-5} = \frac{14-6\sqrt{5}}{4} = \frac{7-3\sqrt{5}}{2}y=3+53−5=(3+5)(3−5)(3−5)(3−5)=9−59−65+5=414−65=27−35x+y=7+352+7−352=142=7x+y = \frac{7+3\sqrt{5}}{2} + \frac{7-3\sqrt{5}}{2} = \frac{14}{2} = 7x+y=27+35+27−35=214=7xy=7+352⋅7−352=49−454=44=1xy = \frac{7+3\sqrt{5}}{2} \cdot \frac{7-3\sqrt{5}}{2} = \frac{49 - 45}{4} = \frac{4}{4} = 1xy=27+35⋅27−35=449−45=44=1(5) x4+y4x^4 + y^4x4+y4 を求める。(x+y)2=x2+y2+2xy(x+y)^2 = x^2 + y^2 + 2xy(x+y)2=x2+y2+2xy より、x2+y2=(x+y)2−2xy=72−2(1)=49−2=47x^2 + y^2 = (x+y)^2 - 2xy = 7^2 - 2(1) = 49 - 2 = 47x2+y2=(x+y)2−2xy=72−2(1)=49−2=47(x2+y2)2=x4+y4+2x2y2(x^2+y^2)^2 = x^4 + y^4 + 2x^2y^2(x2+y2)2=x4+y4+2x2y2 より、x4+y4=(x2+y2)2−2(xy)2=(47)2−2(1)2=2209−2=2207x^4 + y^4 = (x^2+y^2)^2 - 2(xy)^2 = (47)^2 - 2(1)^2 = 2209 - 2 = 2207x4+y4=(x2+y2)2−2(xy)2=(47)2−2(1)2=2209−2=2207(6) x5+y5x^5 + y^5x5+y5 を求める。x3+y3=(x+y)(x2−xy+y2)=(x+y)(x2+y2−xy)=7(47−1)=7(46)=322x^3 + y^3 = (x+y)(x^2-xy+y^2) = (x+y)(x^2+y^2-xy) = 7(47-1) = 7(46) = 322x3+y3=(x+y)(x2−xy+y2)=(x+y)(x2+y2−xy)=7(47−1)=7(46)=322x5+y5=(x2+y2)(x3+y3)−x2y2(x+y)=47(322)−12(7)=15134−7=15127x^5 + y^5 = (x^2+y^2)(x^3+y^3) - x^2y^2(x+y) = 47(322) - 1^2(7) = 15134 - 7 = 15127x5+y5=(x2+y2)(x3+y3)−x2y2(x+y)=47(322)−12(7)=15134−7=151273. 最終的な答え(5) x4+y4=2207x^4 + y^4 = 2207x4+y4=2207(6) x5+y5=15127x^5 + y^5 = 15127x5+y5=15127