次の関数を微分する。 (1) $y = \sin 5x \cos 5x$ (2) $y = x - 2x\cos^2 x$ (3) $y = \sin^3 x \cos^3 x$解析学微分三角関数合成関数2025/6/41. 問題の内容次の関数を微分する。(1) y=sin5xcos5xy = \sin 5x \cos 5xy=sin5xcos5x(2) y=x−2xcos2xy = x - 2x\cos^2 xy=x−2xcos2x(3) y=sin3xcos3xy = \sin^3 x \cos^3 xy=sin3xcos3x2. 解き方の手順(1)y=sin5xcos5x=12sin10xy = \sin 5x \cos 5x = \frac{1}{2} \sin 10xy=sin5xcos5x=21sin10x と変形できる。dydx=12(sin10x)′=12(cos10x)(10x)′=12(cos10x)⋅10=5cos10x\frac{dy}{dx} = \frac{1}{2} (\sin 10x)' = \frac{1}{2} (\cos 10x)(10x)' = \frac{1}{2} (\cos 10x) \cdot 10 = 5 \cos 10xdxdy=21(sin10x)′=21(cos10x)(10x)′=21(cos10x)⋅10=5cos10x(2)y=x−2xcos2x=x(1−2cos2x)=x(−cos2x)=−xcos2xy = x - 2x\cos^2 x = x(1 - 2\cos^2 x) = x(-\cos 2x) = -x \cos 2xy=x−2xcos2x=x(1−2cos2x)=x(−cos2x)=−xcos2xdydx=−(xcos2x)′=−[x′cos2x+x(cos2x)′]=−[cos2x+x(−sin2x)(2x)′]=−[cos2x−2xsin2x]=−cos2x+2xsin2x\frac{dy}{dx} = -(x \cos 2x)' = -[x' \cos 2x + x(\cos 2x)'] = -[\cos 2x + x(-\sin 2x)(2x)'] = -[\cos 2x - 2x\sin 2x] = -\cos 2x + 2x\sin 2xdxdy=−(xcos2x)′=−[x′cos2x+x(cos2x)′]=−[cos2x+x(−sin2x)(2x)′]=−[cos2x−2xsin2x]=−cos2x+2xsin2x(3)y=sin3xcos3x=(sinxcosx)3=(12sin2x)3=18sin32xy = \sin^3 x \cos^3 x = (\sin x \cos x)^3 = (\frac{1}{2} \sin 2x)^3 = \frac{1}{8} \sin^3 2xy=sin3xcos3x=(sinxcosx)3=(21sin2x)3=81sin32xdydx=18(sin32x)′=18(3sin22x)(sin2x)′=38sin22x(cos2x)(2x)′=38sin22x(cos2x)⋅2=34sin22xcos2x\frac{dy}{dx} = \frac{1}{8} (\sin^3 2x)' = \frac{1}{8} (3\sin^2 2x) (\sin 2x)' = \frac{3}{8} \sin^2 2x (\cos 2x)(2x)' = \frac{3}{8} \sin^2 2x (\cos 2x) \cdot 2 = \frac{3}{4} \sin^2 2x \cos 2xdxdy=81(sin32x)′=81(3sin22x)(sin2x)′=83sin22x(cos2x)(2x)′=83sin22x(cos2x)⋅2=43sin22xcos2x3. 最終的な答え(1) dydx=5cos10x\frac{dy}{dx} = 5 \cos 10xdxdy=5cos10x(2) dydx=−cos2x+2xsin2x\frac{dy}{dx} = -\cos 2x + 2x\sin 2xdxdy=−cos2x+2xsin2x(3) dydx=34sin22xcos2x\frac{dy}{dx} = \frac{3}{4} \sin^2 2x \cos 2xdxdy=43sin22xcos2x