$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x dx$ を計算します。解析学積分三角関数定積分半角の公式2025/6/51. 問題の内容∫−π2π2sin2xdx\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x dx∫−2π2πsin2xdx を計算します。2. 解き方の手順sin2x\sin^2 xsin2xを半角の公式を使って変形します。sin2x=1−cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}sin2x=21−cos2xしたがって、与えられた積分は次のようになります。∫−π2π2sin2xdx=∫−π2π21−cos2x2dx\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx∫−2π2πsin2xdx=∫−2π2π21−cos2xdx積分を分割します。∫−π2π21−cos2x2dx=12∫−π2π2(1−cos2x)dx=12[∫−π2π21dx−∫−π2π2cos2xdx]\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 - \cos 2x}{2} dx = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos 2x) dx = \frac{1}{2} \left[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 2x dx \right]∫−2π2π21−cos2xdx=21∫−2π2π(1−cos2x)dx=21[∫−2π2π1dx−∫−2π2πcos2xdx]それぞれの積分を計算します。∫−π2π21dx=[x]−π2π2=π2−(−π2)=π\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx = [x]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi}{2} - (-\frac{\pi}{2}) = \pi∫−2π2π1dx=[x]−2π2π=2π−(−2π)=π∫−π2π2cos2xdx=[12sin2x]−π2π2=12sinπ−12sin(−π)=0−0=0\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 2x dx = \left[\frac{1}{2}\sin 2x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{1}{2} \sin \pi - \frac{1}{2} \sin (-\pi) = 0 - 0 = 0∫−2π2πcos2xdx=[21sin2x]−2π2π=21sinπ−21sin(−π)=0−0=0したがって、12[∫−π2π21dx−∫−π2π2cos2xdx]=12[π−0]=π2\frac{1}{2} \left[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 dx - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos 2x dx \right] = \frac{1}{2} [\pi - 0] = \frac{\pi}{2}21[∫−2π2π1dx−∫−2π2πcos2xdx]=21[π−0]=2π3. 最終的な答えπ2\frac{\pi}{2}2π