数列の和 $S$ を求める問題です。 $S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}$代数学数列等差数列等比数列級数シグマ2025/6/51. 問題の内容数列の和 SSS を求める問題です。S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−12. 解き方の手順SSS は、等差数列と等比数列の積の和の形をしています。2S2S2S を計算して、SSS から 2S2S2S を引くことで和を計算します。S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−12S=1⋅2+3⋅22+5⋅23+⋯+(2n−3)⋅2n−1+(2n−1)⋅2n2S = 1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n-3) \cdot 2^{n-1} + (2n-1) \cdot 2^n2S=1⋅2+3⋅22+5⋅23+⋯+(2n−3)⋅2n−1+(2n−1)⋅2nS−2S=1⋅1+(3−1)⋅2+(5−3)⋅22+⋯+(2n−1−(2n−3))⋅2n−1−(2n−1)⋅2nS - 2S = 1 \cdot 1 + (3-1) \cdot 2 + (5-3) \cdot 2^2 + \dots + (2n-1 - (2n-3)) \cdot 2^{n-1} - (2n-1) \cdot 2^nS−2S=1⋅1+(3−1)⋅2+(5−3)⋅22+⋯+(2n−1−(2n−3))⋅2n−1−(2n−1)⋅2n−S=1+2⋅2+2⋅22+⋯+2⋅2n−1−(2n−1)⋅2n-S = 1 + 2 \cdot 2 + 2 \cdot 2^2 + \dots + 2 \cdot 2^{n-1} - (2n-1) \cdot 2^n−S=1+2⋅2+2⋅22+⋯+2⋅2n−1−(2n−1)⋅2n−S=1+2(2+22+⋯+2n−1)−(2n−1)⋅2n-S = 1 + 2(2 + 2^2 + \dots + 2^{n-1}) - (2n-1) \cdot 2^n−S=1+2(2+22+⋯+2n−1)−(2n−1)⋅2n括弧の中は等比数列の和なので、2+22+⋯+2n−1=2(2n−1−1)2−1=2n−22 + 2^2 + \dots + 2^{n-1} = \frac{2(2^{n-1} - 1)}{2 - 1} = 2^n - 22+22+⋯+2n−1=2−12(2n−1−1)=2n−2−S=1+2(2n−2)−(2n−1)⋅2n-S = 1 + 2(2^n - 2) - (2n-1) \cdot 2^n−S=1+2(2n−2)−(2n−1)⋅2n−S=1+2n+1−4−(2n−1)⋅2n-S = 1 + 2^{n+1} - 4 - (2n-1) \cdot 2^n−S=1+2n+1−4−(2n−1)⋅2n−S=2n+1−3−(2n−1)⋅2n-S = 2^{n+1} - 3 - (2n-1) \cdot 2^n−S=2n+1−3−(2n−1)⋅2n−S=2⋅2n−3−2n⋅2n+2n-S = 2 \cdot 2^n - 3 - 2n \cdot 2^n + 2^n−S=2⋅2n−3−2n⋅2n+2n−S=3⋅2n−3−2n⋅2n-S = 3 \cdot 2^n - 3 - 2n \cdot 2^n−S=3⋅2n−3−2n⋅2n−S=(3−2n)⋅2n−3-S = (3 - 2n) \cdot 2^n - 3−S=(3−2n)⋅2n−3S=(2n−3)⋅2n+3S = (2n - 3) \cdot 2^n + 3S=(2n−3)⋅2n+33. 最終的な答えS=(2n−3)2n+3S = (2n - 3)2^n + 3S=(2n−3)2n+3