$(\frac{\sqrt{2}}{\sqrt{3}+i})^8 = a+bi$ を満たす実数 $a, b$ を求めよ。代数学複素数複素数の計算ド・モアブルの定理2025/6/6はい、承知いたしました。画像にある3つの問題のうち、最初に問題1の(1)を解きます。1. 問題の内容(23+i)8=a+bi(\frac{\sqrt{2}}{\sqrt{3}+i})^8 = a+bi(3+i2)8=a+bi を満たす実数 a,ba, ba,b を求めよ。2. 解き方の手順まず、複素数の分母を実数化します。23+i=2(3−i)(3+i)(3−i)=6−2i3+1=6−2i4\frac{\sqrt{2}}{\sqrt{3}+i} = \frac{\sqrt{2}(\sqrt{3}-i)}{(\sqrt{3}+i)(\sqrt{3}-i)} = \frac{\sqrt{6}-\sqrt{2}i}{3+1} = \frac{\sqrt{6}-\sqrt{2}i}{4}3+i2=(3+i)(3−i)2(3−i)=3+16−2i=46−2i次に、これを極形式で表します。r=(64)2+(−24)2=616+216=816=12=22r = \sqrt{(\frac{\sqrt{6}}{4})^2 + (-\frac{\sqrt{2}}{4})^2} = \sqrt{\frac{6}{16} + \frac{2}{16}} = \sqrt{\frac{8}{16}} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}r=(46)2+(−42)2=166+162=168=21=22cosθ=6/42/2=64⋅22=32\cos\theta = \frac{\sqrt{6}/4}{\sqrt{2}/2} = \frac{\sqrt{6}}{4} \cdot \frac{2}{\sqrt{2}} = \frac{\sqrt{3}}{2}cosθ=2/26/4=46⋅22=23sinθ=−2/42/2=−24⋅22=−12\sin\theta = \frac{-\sqrt{2}/4}{\sqrt{2}/2} = \frac{-\sqrt{2}}{4} \cdot \frac{2}{\sqrt{2}} = -\frac{1}{2}sinθ=2/2−2/4=4−2⋅22=−21したがって、θ=−π6\theta = -\frac{\pi}{6}θ=−6πです。23+i=22(cos(−π6)+isin(−π6))\frac{\sqrt{2}}{\sqrt{3}+i} = \frac{\sqrt{2}}{2} (\cos(-\frac{\pi}{6}) + i\sin(-\frac{\pi}{6}))3+i2=22(cos(−6π)+isin(−6π))これを8乗すると、ド・モアブルの定理より(23+i)8=(22)8(cos(−8π6)+isin(−8π6))=(12)4(cos(−4π3)+isin(−4π3))=116(cos(2π3)+isin(2π3))=116(−12+i32)=−132+332i(\frac{\sqrt{2}}{\sqrt{3}+i})^8 = (\frac{\sqrt{2}}{2})^8 (\cos(-\frac{8\pi}{6}) + i\sin(-\frac{8\pi}{6})) = (\frac{1}{2})^4 (\cos(-\frac{4\pi}{3}) + i\sin(-\frac{4\pi}{3})) = \frac{1}{16} (\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})) = \frac{1}{16} (-\frac{1}{2} + i\frac{\sqrt{3}}{2}) = -\frac{1}{32} + \frac{\sqrt{3}}{32}i(3+i2)8=(22)8(cos(−68π)+isin(−68π))=(21)4(cos(−34π)+isin(−34π))=161(cos(32π)+isin(32π))=161(−21+i23)=−321+323iしたがって、a=−132,b=332a = -\frac{1}{32}, b = \frac{\sqrt{3}}{32}a=−321,b=3233. 最終的な答えa=−132a = -\frac{1}{32}a=−321b=332b = \frac{\sqrt{3}}{32}b=323