3枚の硬貨を同時に投げるとき、以下の確率を求めます。 (1) すべて表が出る確率。 (2) 1枚だけ裏が出る確率。

確率論・統計学確率硬貨組み合わせ
2025/6/6

1. 問題の内容

3枚の硬貨を同時に投げるとき、以下の確率を求めます。
(1) すべて表が出る確率。
(2) 1枚だけ裏が出る確率。

2. 解き方の手順

まず、3枚の硬貨を投げたときのすべての可能な結果の数を計算します。
各硬貨には表と裏の2つの可能性があります。
したがって、可能な結果の総数は 2×2×2=23=82 \times 2 \times 2 = 2^3 = 8 です。
(1) すべて表が出る確率
すべて表が出るのは、(表、表、表) の1通りだけです。
したがって、確率は 18\frac{1}{8} です。
(2) 1枚だけ裏が出る確率
1枚だけ裏が出るのは、以下の3通りです。
(裏、表、表)
(表、裏、表)
(表、表、裏)
したがって、確率は 38\frac{3}{8} です。

3. 最終的な答え

(1) すべて表が出る確率: 18\frac{1}{8}
(2) 1枚だけ裏が出る確率: 38\frac{3}{8}

「確率論・統計学」の関連問題

白玉2つと赤玉5つが入っている袋から1個の玉を取り出し、色を調べてから袋に戻す操作を40回繰り返す。白玉を取り出す回数 $X$ は二項分布 $B(n, p)$ に従う。 (1) $n$ と $p$ を...

確率二項分布期待値分散標準偏差
2025/6/6

1から4までの数字が書かれたカードが合計10枚あります。1が4枚、2が3枚、3が2枚、4が1枚です。この中からランダムに1枚を選び、そのカードに書かれた数をXとします。Xの期待値E(X)、X^2の期待...

期待値分散確率分布
2025/6/6

8人を指定された人数でいくつかのグループに分ける場合の数を計算する問題です。 (1) 8人をA, B, C, Dの4つの組に、2人ずつ分ける場合の数を求める。 (2) 8人を2人ずつの4つの組に分ける...

組み合わせ場合の数順列二項係数
2025/6/6

確率変数 $X$ の期待値が $E[X] = \frac{5}{2}$、分散が $V[X] = \frac{5}{4}$ であるとき、確率変数 $-2X+3$ の期待値、分散、標準偏差を求める。

期待値分散標準偏差確率変数線形性
2025/6/6

1と書かれたカードが4枚、2と書かれたカードが3枚、3と書かれたカードが2枚、4と書かれたカードが1枚、合計10枚のカードがある。この中から無作為に1枚カードを取り出し、取り出したカードに書かれた数を...

期待値分散確率変数確率分布
2025/6/6

大小中3個のサイコロを投げるとき、以下の条件を満たす場合はそれぞれ何通りあるか。 (1) 目がすべて異なる (2) 少なくとも2個が同じ目 (3) 目の積が3の倍数 (4) 目の和が奇数

確率組み合わせサイコロ場合の数
2025/6/6

大小中3個のサイコロを投げたとき、以下の条件を満たす場合の数をそれぞれ求めます。 (1) 目がすべて異なる (2) 少なくとも2個が同じ目 (3) 目の積が3の倍数 (4) 目の和が奇数

確率場合の数サイコロ組み合わせ
2025/6/6

大小中3個のサイコロを投げるとき、以下の事象が起こる場合の数をそれぞれ求める問題です。 (1) 目の数が全て異なる (2) 少なくとも2個のサイコロの目が同じ (3) 目の積が3の倍数 (4) 目の和...

場合の数確率サイコロ組み合わせ一筆書き
2025/6/6

## 1. 問題の内容

確率四分位数四分位範囲硬貨サイコロデータ分析
2025/6/6

大小中3個のサイコロを投げるとき、以下の条件を満たす場合の数をそれぞれ求めます。 (1) 目の出方がすべて異なる。 (2) 少なくとも2個が同じ目である。 (3) 目の積が3の倍数である。 (4) 目...

確率場合の数サイコロ組み合わせ
2025/6/6